MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfvval Structured version   Visualization version   GIF version

Theorem cnextfvval 22676
Description: The value of the continuous extension of a given function 𝐹 at a point 𝑋. (Contributed by Thierry Arnoux, 21-Dec-2017.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
Assertion
Ref Expression
cnextfvval ((𝜑𝑋𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝜑,𝑥

Proof of Theorem cnextfvval
StepHypRef Expression
1 cnextf.3 . . . 4 (𝜑𝐽 ∈ Top)
21adantr 483 . . 3 ((𝜑𝑋𝐶) → 𝐽 ∈ Top)
3 cnextf.4 . . . 4 (𝜑𝐾 ∈ Haus)
43adantr 483 . . 3 ((𝜑𝑋𝐶) → 𝐾 ∈ Haus)
5 cnextf.5 . . . 4 (𝜑𝐹:𝐴𝐵)
65adantr 483 . . 3 ((𝜑𝑋𝐶) → 𝐹:𝐴𝐵)
7 cnextf.a . . . 4 (𝜑𝐴𝐶)
87adantr 483 . . 3 ((𝜑𝑋𝐶) → 𝐴𝐶)
9 cnextf.1 . . . 4 𝐶 = 𝐽
10 cnextf.2 . . . 4 𝐵 = 𝐾
119, 10cnextfun 22675 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
122, 4, 6, 8, 11syl22anc 836 . 2 ((𝜑𝑋𝐶) → Fun ((𝐽CnExt𝐾)‘𝐹))
13 cnextf.6 . . . . . 6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
1413eleq2d 2901 . . . . 5 (𝜑 → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑋𝐶))
1514biimpar 480 . . . 4 ((𝜑𝑋𝐶) → 𝑋 ∈ ((cls‘𝐽)‘𝐴))
16 fvex 6686 . . . . . . 7 ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ V
1716uniex 7470 . . . . . 6 ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ V
1817snid 4604 . . . . 5 ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ { ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)}
19 sneq 4580 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2019fveq2d 6677 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑋}))
2120oveq1d 7174 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
2221oveq2d 7175 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
2322fveq1d 6675 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
2423breq1d 5079 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o))
2524imbi2d 343 . . . . . . . 8 (𝑥 = 𝑋 → ((𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o) ↔ (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o)))
263adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐾 ∈ Haus)
271adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝐽 ∈ Top)
289toptopon 21528 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
2927, 28sylib 220 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝐽 ∈ (TopOn‘𝐶))
307adantr 483 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝐴𝐶)
31 simpr 487 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑥𝐶)
3213eleq2d 2901 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥𝐶))
3332biimpar 480 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
34 trnei 22503 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3534biimpa 479 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
3629, 30, 31, 33, 35syl31anc 1369 . . . . . . . . . 10 ((𝜑𝑥𝐶) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
375adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐹:𝐴𝐵)
38 cnextf.7 . . . . . . . . . 10 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
3910hausflf2 22609 . . . . . . . . . 10 (((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o)
4026, 36, 37, 38, 39syl31anc 1369 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o)
4140expcom 416 . . . . . . . 8 (𝑥𝐶 → (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o))
4225, 41vtoclga 3577 . . . . . . 7 (𝑋𝐶 → (𝜑 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o))
4342impcom 410 . . . . . 6 ((𝜑𝑋𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o)
44 en1b 8580 . . . . . 6 (((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ≈ 1o ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) = { ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)})
4543, 44sylib 220 . . . . 5 ((𝜑𝑋𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) = { ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)})
4618, 45eleqtrrid 2923 . . . 4 ((𝜑𝑋𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
47 nfiu1 4956 . . . . . . . 8 𝑥 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
4847nfel2 2999 . . . . . . 7 𝑥𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
49 nfv 1914 . . . . . . 7 𝑥(𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
5048, 49nfbi 1903 . . . . . 6 𝑥(⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
51 opeq1 4806 . . . . . . . 8 (𝑥 = 𝑋 → ⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ = ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩)
5251eleq1d 2900 . . . . . . 7 (𝑥 = 𝑋 → (⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
53 eleq1 2903 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑋 ∈ ((cls‘𝐽)‘𝐴)))
5423eleq2d 2901 . . . . . . . 8 (𝑥 = 𝑋 → ( ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
5553, 54anbi12d 632 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))))
5652, 55bibi12d 348 . . . . . 6 (𝑥 = 𝑋 → ((⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) ↔ (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))))
57 opeliunxp 5622 . . . . . 6 (⟨𝑥, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
5850, 56, 57vtoclg1f 3569 . . . . 5 (𝑋𝐶 → (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))))
5958adantl 484 . . . 4 ((𝜑𝑋𝐶) → (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑋 ∈ ((cls‘𝐽)‘𝐴) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))))
6015, 46, 59mpbir2and 711 . . 3 ((𝜑𝑋𝐶) → ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
61 df-br 5070 . . . 4 (𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
62 haustop 21942 . . . . . . . 8 (𝐾 ∈ Haus → 𝐾 ∈ Top)
633, 62syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
6463adantr 483 . . . . . 6 ((𝜑𝑋𝐶) → 𝐾 ∈ Top)
659, 10cnextfval 22673 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
662, 64, 6, 8, 65syl22anc 836 . . . . 5 ((𝜑𝑋𝐶) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
6766eleq2d 2901 . . . 4 ((𝜑𝑋𝐶) → (⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
6861, 67syl5bb 285 . . 3 ((𝜑𝑋𝐶) → (𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ ⟨𝑋, ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
6960, 68mpbird 259 . 2 ((𝜑𝑋𝐶) → 𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
70 funbrfv 6719 . 2 (Fun ((𝐽CnExt𝐾)‘𝐹) → (𝑋((𝐽CnExt𝐾)‘𝐹) ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
7112, 69, 70sylc 65 1 ((𝜑𝑋𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑋) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wss 3939  c0 4294  {csn 4570  cop 4576   cuni 4841   ciun 4922   class class class wbr 5069   × cxp 5556  Fun wfun 6352  wf 6354  cfv 6358  (class class class)co 7159  1oc1o 8098  cen 8509  t crest 16697  Topctop 21504  TopOnctopon 21521  clsccl 21629  neicnei 21708  Hauscha 21919  Filcfil 22456   fLimf cflf 22546  CnExtccnext 22670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-1o 8105  df-map 8411  df-pm 8412  df-en 8513  df-rest 16699  df-fbas 20545  df-top 21505  df-topon 21522  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-haus 21926  df-fil 22457  df-flim 22550  df-flf 22551  df-cnext 22671
This theorem is referenced by:  cnextcn  22678  cnextfres1  22679
  Copyright terms: Public domain W3C validator