MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2lem Structured version   Visualization version   GIF version

Theorem cnfcom2lem 9158
Description: Lemma for cnfcom2 9159. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑o 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
cnfcom.t 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
cnfcom.w 𝑊 = (𝐺 dom 𝐺)
cnfcom2.1 (𝜑 → ∅ ∈ 𝐵)
Assertion
Ref Expression
cnfcom2lem (𝜑 → dom 𝐺 = suc dom 𝐺)
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑥,𝑊   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧   𝜑,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑊(𝑧,𝑓,𝑘)

Proof of Theorem cnfcom2lem
StepHypRef Expression
1 cnfcom2.1 . . . . . 6 (𝜑 → ∅ ∈ 𝐵)
2 n0i 4298 . . . . . 6 (∅ ∈ 𝐵 → ¬ 𝐵 = ∅)
31, 2syl 17 . . . . 5 (𝜑 → ¬ 𝐵 = ∅)
4 cnfcom.f . . . . . . . . . . . . . 14 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.s . . . . . . . . . . . . . . . . 17 𝑆 = dom (ω CNF 𝐴)
6 omelon 9103 . . . . . . . . . . . . . . . . . 18 ω ∈ On
76a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ω ∈ On)
8 cnfcom.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ On)
95, 7, 8cantnff1o 9153 . . . . . . . . . . . . . . . 16 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴))
10 f1ocnv 6621 . . . . . . . . . . . . . . . 16 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) → (ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆)
11 f1of 6609 . . . . . . . . . . . . . . . 16 ((ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
129, 10, 113syl 18 . . . . . . . . . . . . . . 15 (𝜑(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
13 cnfcom.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ (ω ↑o 𝐴))
1412, 13ffvelrnd 6846 . . . . . . . . . . . . . 14 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
154, 14eqeltrid 2917 . . . . . . . . . . . . 13 (𝜑𝐹𝑆)
165, 7, 8cantnfs 9123 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)))
1715, 16mpbid 234 . . . . . . . . . . . 12 (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))
1817simpld 497 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ω)
1918adantr 483 . . . . . . . . . 10 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹:𝐴⟶ω)
2019feqmptd 6727 . . . . . . . . 9 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
21 dif0 4331 . . . . . . . . . . . 12 (𝐴 ∖ ∅) = 𝐴
2221eleq2i 2904 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ ∅) ↔ 𝑥𝐴)
23 simpr 487 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ dom 𝐺 = ∅) → dom 𝐺 = ∅)
24 ovexd 7185 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 supp ∅) ∈ V)
25 cnfcom.g . . . . . . . . . . . . . . . . . . . 20 𝐺 = OrdIso( E , (𝐹 supp ∅))
265, 7, 8, 25, 15cantnfcl 9124 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
2726simpld 497 . . . . . . . . . . . . . . . . . 18 (𝜑 → E We (𝐹 supp ∅))
2825oien 8996 . . . . . . . . . . . . . . . . . 18 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅))
2924, 27, 28syl2anc 586 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅))
3029adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ dom 𝐺 = ∅) → dom 𝐺 ≈ (𝐹 supp ∅))
3123, 30eqbrtrrd 5082 . . . . . . . . . . . . . . 15 ((𝜑 ∧ dom 𝐺 = ∅) → ∅ ≈ (𝐹 supp ∅))
3231ensymd 8554 . . . . . . . . . . . . . 14 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) ≈ ∅)
33 en0 8566 . . . . . . . . . . . . . 14 ((𝐹 supp ∅) ≈ ∅ ↔ (𝐹 supp ∅) = ∅)
3432, 33sylib 220 . . . . . . . . . . . . 13 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) = ∅)
35 ss0b 4350 . . . . . . . . . . . . 13 ((𝐹 supp ∅) ⊆ ∅ ↔ (𝐹 supp ∅) = ∅)
3634, 35sylibr 236 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) ⊆ ∅)
378adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐴 ∈ On)
38 0ex 5203 . . . . . . . . . . . . 13 ∅ ∈ V
3938a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → ∅ ∈ V)
4019, 36, 37, 39suppssr 7855 . . . . . . . . . . 11 (((𝜑 ∧ dom 𝐺 = ∅) ∧ 𝑥 ∈ (𝐴 ∖ ∅)) → (𝐹𝑥) = ∅)
4122, 40sylan2br 596 . . . . . . . . . 10 (((𝜑 ∧ dom 𝐺 = ∅) ∧ 𝑥𝐴) → (𝐹𝑥) = ∅)
4241mpteq2dva 5153 . . . . . . . . 9 ((𝜑 ∧ dom 𝐺 = ∅) → (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ ∅))
4320, 42eqtrd 2856 . . . . . . . 8 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝑥𝐴 ↦ ∅))
44 fconstmpt 5608 . . . . . . . 8 (𝐴 × {∅}) = (𝑥𝐴 ↦ ∅)
4543, 44syl6eqr 2874 . . . . . . 7 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝐴 × {∅}))
4645fveq2d 6668 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘(𝐴 × {∅})))
474fveq2i 6667 . . . . . . . 8 ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵))
48 f1ocnvfv2 7028 . . . . . . . . 9 (((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) ∧ 𝐵 ∈ (ω ↑o 𝐴)) → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
499, 13, 48syl2anc 586 . . . . . . . 8 (𝜑 → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5047, 49syl5eq 2868 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘𝐹) = 𝐵)
5150adantr 483 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘𝐹) = 𝐵)
52 peano1 7595 . . . . . . . . 9 ∅ ∈ ω
5352a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ ω)
545, 7, 8, 53cantnf0 9132 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘(𝐴 × {∅})) = ∅)
5554adantr 483 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘(𝐴 × {∅})) = ∅)
5646, 51, 553eqtr3d 2864 . . . . 5 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐵 = ∅)
573, 56mtand 814 . . . 4 (𝜑 → ¬ dom 𝐺 = ∅)
58 nnlim 7587 . . . . 5 (dom 𝐺 ∈ ω → ¬ Lim dom 𝐺)
5926, 58simpl2im 506 . . . 4 (𝜑 → ¬ Lim dom 𝐺)
60 ioran 980 . . . 4 (¬ (dom 𝐺 = ∅ ∨ Lim dom 𝐺) ↔ (¬ dom 𝐺 = ∅ ∧ ¬ Lim dom 𝐺))
6157, 59, 60sylanbrc 585 . . 3 (𝜑 → ¬ (dom 𝐺 = ∅ ∨ Lim dom 𝐺))
6225oicl 8987 . . . 4 Ord dom 𝐺
63 unizlim 6301 . . . 4 (Ord dom 𝐺 → (dom 𝐺 = dom 𝐺 ↔ (dom 𝐺 = ∅ ∨ Lim dom 𝐺)))
6462, 63ax-mp 5 . . 3 (dom 𝐺 = dom 𝐺 ↔ (dom 𝐺 = ∅ ∨ Lim dom 𝐺))
6561, 64sylnibr 331 . 2 (𝜑 → ¬ dom 𝐺 = dom 𝐺)
66 orduniorsuc 7539 . . . 4 (Ord dom 𝐺 → (dom 𝐺 = dom 𝐺 ∨ dom 𝐺 = suc dom 𝐺))
6762, 66mp1i 13 . . 3 (𝜑 → (dom 𝐺 = dom 𝐺 ∨ dom 𝐺 = suc dom 𝐺))
6867ord 860 . 2 (𝜑 → (¬ dom 𝐺 = dom 𝐺 → dom 𝐺 = suc dom 𝐺))
6965, 68mpd 15 1 (𝜑 → dom 𝐺 = suc dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  Vcvv 3494  cdif 3932  cun 3933  wss 3935  c0 4290  {csn 4560   cuni 4831   class class class wbr 5058  cmpt 5138   E cep 5458   We wwe 5507   × cxp 5547  ccnv 5548  dom cdm 5549  Ord word 6184  Oncon0 6185  Lim wlim 6186  suc csuc 6187  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  cmpo 7152  ωcom 7574   supp csupp 7824  seqωcseqom 8077   +o coa 8093   ·o comu 8094  o coe 8095  cen 8500   finSupp cfsupp 8827  OrdIsocoi 8967   CNF ccnf 9118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-seqom 8078  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-oexp 8102  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-cnf 9119
This theorem is referenced by:  cnfcom2  9159  cnfcom3lem  9160  cnfcom3  9161
  Copyright terms: Public domain W3C validator