Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnfdmsn Structured version   Visualization version   GIF version

Theorem cnfdmsn 42163
Description: A function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
cnfdmsn ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem cnfdmsn
StepHypRef Expression
1 fmptsnxp 41423 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) = ({𝐴} × {𝐵}))
2 snex 5331 . . . 4 {𝐴} ∈ V
3 distopon 21604 . . . 4 ({𝐴} ∈ V → 𝒫 {𝐴} ∈ (TopOn‘{𝐴}))
42, 3mp1i 13 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 {𝐴} ∈ (TopOn‘{𝐴}))
5 snex 5331 . . . 4 {𝐵} ∈ V
6 distopon 21604 . . . 4 ({𝐵} ∈ V → 𝒫 {𝐵} ∈ (TopOn‘{𝐵}))
75, 6mp1i 13 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 {𝐵} ∈ (TopOn‘{𝐵}))
8 snidg 4598 . . . 4 (𝐵𝑊𝐵 ∈ {𝐵})
98adantl 484 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵 ∈ {𝐵})
10 cnconst2 21890 . . 3 ((𝒫 {𝐴} ∈ (TopOn‘{𝐴}) ∧ 𝒫 {𝐵} ∈ (TopOn‘{𝐵}) ∧ 𝐵 ∈ {𝐵}) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
114, 7, 9, 10syl3anc 1367 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
121, 11eqeltrd 2913 1 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2110  Vcvv 3494  𝒫 cpw 4538  {csn 4566  cmpt 5145   × cxp 5552  cfv 6354  (class class class)co 7155  TopOnctopon 21517   Cn ccn 21831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-map 8407  df-topgen 16716  df-top 21501  df-topon 21518  df-cn 21834  df-cnp 21835
This theorem is referenced by:  cncfdmsn  42171
  Copyright terms: Public domain W3C validator