MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldfunALT Structured version   Visualization version   GIF version

Theorem cnfldfunALT 20561
Description: Alternate proof of cnfldfun 20560 (much shorter proof, using cnfldstr 20550 and structn0fun 16498: in addition, it must be shown that ∅ ∉ ℂfld). (Contributed by AV, 18-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cnfldfunALT Fun ℂfld

Proof of Theorem cnfldfunALT
StepHypRef Expression
1 cnfldstr 20550 . 2 fld Struct ⟨1, 13⟩
2 structn0fun 16498 . . 3 (ℂfld Struct ⟨1, 13⟩ → Fun (ℂfld ∖ {∅}))
3 fvex 6686 . . . . . . . . . . . . 13 (Base‘ndx) ∈ V
4 cnex 10621 . . . . . . . . . . . . 13 ℂ ∈ V
53, 4opnzi 5369 . . . . . . . . . . . 12 ⟨(Base‘ndx), ℂ⟩ ≠ ∅
65nesymi 3076 . . . . . . . . . . 11 ¬ ∅ = ⟨(Base‘ndx), ℂ⟩
7 fvex 6686 . . . . . . . . . . . . 13 (+g‘ndx) ∈ V
8 addex 12390 . . . . . . . . . . . . 13 + ∈ V
97, 8opnzi 5369 . . . . . . . . . . . 12 ⟨(+g‘ndx), + ⟩ ≠ ∅
109nesymi 3076 . . . . . . . . . . 11 ¬ ∅ = ⟨(+g‘ndx), + ⟩
11 fvex 6686 . . . . . . . . . . . . 13 (.r‘ndx) ∈ V
12 mulex 12391 . . . . . . . . . . . . 13 · ∈ V
1311, 12opnzi 5369 . . . . . . . . . . . 12 ⟨(.r‘ndx), · ⟩ ≠ ∅
1413nesymi 3076 . . . . . . . . . . 11 ¬ ∅ = ⟨(.r‘ndx), · ⟩
15 3ioran 1102 . . . . . . . . . . . 12 (¬ (∅ = ⟨(Base‘ndx), ℂ⟩ ∨ ∅ = ⟨(+g‘ndx), + ⟩ ∨ ∅ = ⟨(.r‘ndx), · ⟩) ↔ (¬ ∅ = ⟨(Base‘ndx), ℂ⟩ ∧ ¬ ∅ = ⟨(+g‘ndx), + ⟩ ∧ ¬ ∅ = ⟨(.r‘ndx), · ⟩))
16 0ex 5214 . . . . . . . . . . . . 13 ∅ ∈ V
1716eltp 4629 . . . . . . . . . . . 12 (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ↔ (∅ = ⟨(Base‘ndx), ℂ⟩ ∨ ∅ = ⟨(+g‘ndx), + ⟩ ∨ ∅ = ⟨(.r‘ndx), · ⟩))
1815, 17xchnxbir 335 . . . . . . . . . . 11 (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ↔ (¬ ∅ = ⟨(Base‘ndx), ℂ⟩ ∧ ¬ ∅ = ⟨(+g‘ndx), + ⟩ ∧ ¬ ∅ = ⟨(.r‘ndx), · ⟩))
196, 10, 14, 18mpbir3an 1337 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
20 fvex 6686 . . . . . . . . . . . . 13 (*𝑟‘ndx) ∈ V
21 cjf 14466 . . . . . . . . . . . . . 14 ∗:ℂ⟶ℂ
22 fex 6992 . . . . . . . . . . . . . 14 ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V)
2321, 4, 22mp2an 690 . . . . . . . . . . . . 13 ∗ ∈ V
2420, 23opnzi 5369 . . . . . . . . . . . 12 ⟨(*𝑟‘ndx), ∗⟩ ≠ ∅
2524necomi 3073 . . . . . . . . . . 11 ∅ ≠ ⟨(*𝑟‘ndx), ∗⟩
26 nelsn 4608 . . . . . . . . . . 11 (∅ ≠ ⟨(*𝑟‘ndx), ∗⟩ → ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩})
2725, 26ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}
2819, 27pm3.2i 473 . . . . . . . . 9 (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩})
29 fvex 6686 . . . . . . . . . . . . . 14 (TopSet‘ndx) ∈ V
30 fvex 6686 . . . . . . . . . . . . . 14 (MetOpen‘(abs ∘ − )) ∈ V
3129, 30opnzi 5369 . . . . . . . . . . . . 13 ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ≠ ∅
3231nesymi 3076 . . . . . . . . . . . 12 ¬ ∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
33 fvex 6686 . . . . . . . . . . . . . 14 (le‘ndx) ∈ V
34 letsr 17840 . . . . . . . . . . . . . . 15 ≤ ∈ TosetRel
3534elexi 3516 . . . . . . . . . . . . . 14 ≤ ∈ V
3633, 35opnzi 5369 . . . . . . . . . . . . 13 ⟨(le‘ndx), ≤ ⟩ ≠ ∅
3736nesymi 3076 . . . . . . . . . . . 12 ¬ ∅ = ⟨(le‘ndx), ≤ ⟩
38 fvex 6686 . . . . . . . . . . . . . 14 (dist‘ndx) ∈ V
39 absf 14700 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
40 fex 6992 . . . . . . . . . . . . . . . 16 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4139, 4, 40mp2an 690 . . . . . . . . . . . . . . 15 abs ∈ V
42 subf 10891 . . . . . . . . . . . . . . . 16 − :(ℂ × ℂ)⟶ℂ
434, 4xpex 7479 . . . . . . . . . . . . . . . 16 (ℂ × ℂ) ∈ V
44 fex 6992 . . . . . . . . . . . . . . . 16 (( − :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V) → − ∈ V)
4542, 43, 44mp2an 690 . . . . . . . . . . . . . . 15 − ∈ V
4641, 45coex 7638 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ V
4738, 46opnzi 5369 . . . . . . . . . . . . 13 ⟨(dist‘ndx), (abs ∘ − )⟩ ≠ ∅
4847nesymi 3076 . . . . . . . . . . . 12 ¬ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩
49 3ioran 1102 . . . . . . . . . . . 12 (¬ (∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∨ ∅ = ⟨(le‘ndx), ≤ ⟩ ∨ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩) ↔ (¬ ∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∧ ¬ ∅ = ⟨(le‘ndx), ≤ ⟩ ∧ ¬ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩))
5032, 37, 48, 49mpbir3an 1337 . . . . . . . . . . 11 ¬ (∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∨ ∅ = ⟨(le‘ndx), ≤ ⟩ ∨ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩)
5116eltp 4629 . . . . . . . . . . 11 (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ↔ (∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∨ ∅ = ⟨(le‘ndx), ≤ ⟩ ∨ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩))
5250, 51mtbir 325 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
53 fvex 6686 . . . . . . . . . . . . 13 (UnifSet‘ndx) ∈ V
54 fvex 6686 . . . . . . . . . . . . 13 (metUnif‘(abs ∘ − )) ∈ V
5553, 54opnzi 5369 . . . . . . . . . . . 12 ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩ ≠ ∅
5655necomi 3073 . . . . . . . . . . 11 ∅ ≠ ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
57 nelsn 4608 . . . . . . . . . . 11 (∅ ≠ ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩ → ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5856, 57ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5952, 58pm3.2i 473 . . . . . . . . 9 (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
6028, 59pm3.2i 473 . . . . . . . 8 ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
61 ioran 980 . . . . . . . . 9 (¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ (¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ ¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
62 ioran 980 . . . . . . . . . 10 (¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ↔ (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}))
63 ioran 980 . . . . . . . . . 10 (¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ↔ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
6462, 63anbi12i 628 . . . . . . . . 9 ((¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ ¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
6561, 64bitri 277 . . . . . . . 8 (¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
6660, 65mpbir 233 . . . . . . 7 ¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
67 df-cnfld 20549 . . . . . . . . 9 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
6867eleq2i 2907 . . . . . . . 8 (∅ ∈ ℂfld ↔ ∅ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
69 elun 4128 . . . . . . . 8 (∅ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ (∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
70 elun 4128 . . . . . . . . 9 (∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ↔ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}))
71 elun 4128 . . . . . . . . 9 (∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ↔ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7270, 71orbi12i 911 . . . . . . . 8 ((∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
7368, 69, 723bitri 299 . . . . . . 7 (∅ ∈ ℂfld ↔ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
7466, 73mtbir 325 . . . . . 6 ¬ ∅ ∈ ℂfld
75 disjsn 4650 . . . . . 6 ((ℂfld ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ℂfld)
7674, 75mpbir 233 . . . . 5 (ℂfld ∩ {∅}) = ∅
77 disjdif2 4431 . . . . 5 ((ℂfld ∩ {∅}) = ∅ → (ℂfld ∖ {∅}) = ℂfld)
7876, 77ax-mp 5 . . . 4 (ℂfld ∖ {∅}) = ℂfld
7978funeqi 6379 . . 3 (Fun (ℂfld ∖ {∅}) ↔ Fun ℂfld)
802, 79sylib 220 . 2 (ℂfld Struct ⟨1, 13⟩ → Fun ℂfld)
811, 80ax-mp 5 1 Fun ℂfld
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1536  wcel 2113  wne 3019  Vcvv 3497  cdif 3936  cun 3937  cin 3938  c0 4294  {csn 4570  {ctp 4574  cop 4576   class class class wbr 5069   × cxp 5556  ccom 5562  Fun wfun 6352  wf 6354  cfv 6358  cc 10538  cr 10539  1c1 10541   + caddc 10543   · cmul 10545  cle 10679  cmin 10873  3c3 11696  cdc 12101  ccj 14458  abscabs 14596   Struct cstr 16482  ndxcnx 16483  Basecbs 16486  +gcplusg 16568  .rcmulr 16569  *𝑟cstv 16570  TopSetcts 16574  lecple 16575  distcds 16577  UnifSetcunif 16578   TosetRel ctsr 17812  MetOpencmopn 20538  metUnifcmetu 20539  fldccnfld 20548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-rp 12393  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-plusg 16581  df-mulr 16582  df-starv 16583  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-ps 17813  df-tsr 17814  df-cnfld 20549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator