MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldstr Structured version   Visualization version   GIF version

Theorem cnfldstr 19680
Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldstr fld Struct ⟨1, 13⟩

Proof of Theorem cnfldstr
StepHypRef Expression
1 df-cnfld 19679 . 2 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
2 eqid 2621 . . . 4 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
32srngfn 15940 . . 3 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) Struct ⟨1, 4⟩
4 9nn 11144 . . . . 5 9 ∈ ℕ
5 tsetndx 15972 . . . . 5 (TopSet‘ndx) = 9
6 9lt10 11625 . . . . 5 9 < 10
7 10nn 11466 . . . . 5 10 ∈ ℕ
8 plendx 15979 . . . . 5 (le‘ndx) = 10
9 1nn0 11260 . . . . . 6 1 ∈ ℕ0
10 0nn0 11259 . . . . . 6 0 ∈ ℕ0
11 2nn 11137 . . . . . 6 2 ∈ ℕ
12 2pos 11064 . . . . . 6 0 < 2
139, 10, 11, 12declt 11482 . . . . 5 10 < 12
149, 11decnncl 11470 . . . . 5 12 ∈ ℕ
15 dsndx 15994 . . . . 5 (dist‘ndx) = 12
164, 5, 6, 7, 8, 13, 14, 15strle3 15907 . . . 4 {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} Struct ⟨9, 12⟩
17 3nn 11138 . . . . . 6 3 ∈ ℕ
189, 17decnncl 11470 . . . . 5 13 ∈ ℕ
19 unifndx 15996 . . . . 5 (UnifSet‘ndx) = 13
2018, 19strle1 15905 . . . 4 {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} Struct ⟨13, 13⟩
21 2nn0 11261 . . . . 5 2 ∈ ℕ0
22 2lt3 11147 . . . . 5 2 < 3
239, 21, 17, 22declt 11482 . . . 4 12 < 13
2416, 20, 23strleun 15904 . . 3 ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) Struct ⟨9, 13⟩
25 4lt9 11178 . . 3 4 < 9
263, 24, 25strleun 15904 . 2 (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) Struct ⟨1, 13⟩
271, 26eqbrtri 4639 1 fld Struct ⟨1, 13⟩
Colors of variables: wff setvar class
Syntax hints:  cun 3557  {csn 4153  {ctp 4157  cop 4159   class class class wbr 4618  ccom 5083  cfv 5852  cc 9886  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893  cle 10027  cmin 10218  2c2 11022  3c3 11023  4c4 11024  9c9 11029  cdc 11445  ccj 13778  abscabs 13916   Struct cstr 15788  ndxcnx 15789  Basecbs 15792  +gcplusg 15873  .rcmulr 15874  *𝑟cstv 15875  TopSetcts 15879  lecple 15880  distcds 15882  UnifSetcunif 15883  MetOpencmopn 19668  metUnifcmetu 19669  fldccnfld 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-plusg 15886  df-mulr 15887  df-starv 15888  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-cnfld 19679
This theorem is referenced by:  cnfldex  19681  cnfldbas  19682  cnfldadd  19683  cnfldmul  19684  cnfldcj  19685  cnfldtset  19686  cnfldle  19687  cnfldds  19688  cnfldunif  19689  cnfldfunALT  19691  cffldtocusgr  26247
  Copyright terms: Public domain W3C validator