MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldsub Structured version   Visualization version   GIF version

Theorem cnfldsub 20575
Description: The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
cnfldsub − = (-g‘ℂfld)

Proof of Theorem cnfldsub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 20551 . . . . 5 ℂ = (Base‘ℂfld)
2 cnfldadd 20552 . . . . 5 + = (+g‘ℂfld)
3 eqid 2823 . . . . 5 (invg‘ℂfld) = (invg‘ℂfld)
4 eqid 2823 . . . . 5 (-g‘ℂfld) = (-g‘ℂfld)
51, 2, 3, 4grpsubval 18151 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(-g‘ℂfld)𝑦) = (𝑥 + ((invg‘ℂfld)‘𝑦)))
6 cnfldneg 20573 . . . . . 6 (𝑦 ∈ ℂ → ((invg‘ℂfld)‘𝑦) = -𝑦)
76adantl 484 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((invg‘ℂfld)‘𝑦) = -𝑦)
87oveq2d 7174 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + ((invg‘ℂfld)‘𝑦)) = (𝑥 + -𝑦))
9 negsub 10936 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥𝑦))
105, 8, 93eqtrrd 2863 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) = (𝑥(-g‘ℂfld)𝑦))
1110mpoeq3ia 7234 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦))
12 subf 10890 . . . 4 − :(ℂ × ℂ)⟶ℂ
13 ffn 6516 . . . 4 ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ))
1412, 13ax-mp 5 . . 3 − Fn (ℂ × ℂ)
15 fnov 7284 . . 3 ( − Fn (ℂ × ℂ) ↔ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦)))
1614, 15mpbi 232 . 2 − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦))
17 cnring 20569 . . . . 5 fld ∈ Ring
18 ringgrp 19304 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Grp)
1917, 18ax-mp 5 . . . 4 fld ∈ Grp
201, 4grpsubf 18180 . . . 4 (ℂfld ∈ Grp → (-g‘ℂfld):(ℂ × ℂ)⟶ℂ)
21 ffn 6516 . . . 4 ((-g‘ℂfld):(ℂ × ℂ)⟶ℂ → (-g‘ℂfld) Fn (ℂ × ℂ))
2219, 20, 21mp2b 10 . . 3 (-g‘ℂfld) Fn (ℂ × ℂ)
23 fnov 7284 . . 3 ((-g‘ℂfld) Fn (ℂ × ℂ) ↔ (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦)))
2422, 23mpbi 232 . 2 (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦))
2511, 16, 243eqtr4i 2856 1 − = (-g‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114   × cxp 5555   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  cc 10537   + caddc 10542  cmin 10872  -cneg 10873  Grpcgrp 18105  invgcminusg 18106  -gcsg 18107  Ringcrg 19299  fldccnfld 20547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-cmn 18910  df-mgp 19242  df-ring 19301  df-cring 19302  df-cnfld 20548
This theorem is referenced by:  zndvds  20698  resubgval  20755  cnngp  23390  cnfldtgp  23479  clmsub  23686  clmsubcl  23692  cnindmet  23768  qqhucn  31235  zringsubgval  44456
  Copyright terms: Public domain W3C validator