MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldsub Structured version   Visualization version   GIF version

Theorem cnfldsub 19693
Description: The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
cnfldsub − = (-g‘ℂfld)

Proof of Theorem cnfldsub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 19669 . . . . 5 ℂ = (Base‘ℂfld)
2 cnfldadd 19670 . . . . 5 + = (+g‘ℂfld)
3 eqid 2621 . . . . 5 (invg‘ℂfld) = (invg‘ℂfld)
4 eqid 2621 . . . . 5 (-g‘ℂfld) = (-g‘ℂfld)
51, 2, 3, 4grpsubval 17386 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(-g‘ℂfld)𝑦) = (𝑥 + ((invg‘ℂfld)‘𝑦)))
6 cnfldneg 19691 . . . . . 6 (𝑦 ∈ ℂ → ((invg‘ℂfld)‘𝑦) = -𝑦)
76adantl 482 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((invg‘ℂfld)‘𝑦) = -𝑦)
87oveq2d 6620 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + ((invg‘ℂfld)‘𝑦)) = (𝑥 + -𝑦))
9 negsub 10273 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥𝑦))
105, 8, 93eqtrrd 2660 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) = (𝑥(-g‘ℂfld)𝑦))
1110mpt2eq3ia 6673 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦))
12 subf 10227 . . . 4 − :(ℂ × ℂ)⟶ℂ
13 ffn 6002 . . . 4 ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ))
1412, 13ax-mp 5 . . 3 − Fn (ℂ × ℂ)
15 fnov 6721 . . 3 ( − Fn (ℂ × ℂ) ↔ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦)))
1614, 15mpbi 220 . 2 − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦))
17 cnring 19687 . . . . 5 fld ∈ Ring
18 ringgrp 18473 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Grp)
1917, 18ax-mp 5 . . . 4 fld ∈ Grp
201, 4grpsubf 17415 . . . 4 (ℂfld ∈ Grp → (-g‘ℂfld):(ℂ × ℂ)⟶ℂ)
21 ffn 6002 . . . 4 ((-g‘ℂfld):(ℂ × ℂ)⟶ℂ → (-g‘ℂfld) Fn (ℂ × ℂ))
2219, 20, 21mp2b 10 . . 3 (-g‘ℂfld) Fn (ℂ × ℂ)
23 fnov 6721 . . 3 ((-g‘ℂfld) Fn (ℂ × ℂ) ↔ (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦)))
2422, 23mpbi 220 . 2 (-g‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥(-g‘ℂfld)𝑦))
2511, 16, 243eqtr4i 2653 1 − = (-g‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wcel 1987   × cxp 5072   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cmpt2 6606  cc 9878   + caddc 9883  cmin 10210  -cneg 10211  Grpcgrp 17343  invgcminusg 17344  -gcsg 17345  Ringcrg 18468  fldccnfld 19665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-cmn 18116  df-mgp 18411  df-ring 18470  df-cring 18471  df-cnfld 19666
This theorem is referenced by:  zndvds  19817  resubgval  19874  cnngp  22493  cnfldtgp  22580  clmsub  22788  clmsubcl  22794  cnindmet  22870  qqhucn  29818  zringsubgval  41471
  Copyright terms: Public domain W3C validator