MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheibor Structured version   Visualization version   GIF version

Theorem cnheibor 23551
Description: Heine-Borel theorem for complex numbers. A subset of is compact iff it is closed and bounded. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2 𝐽 = (TopOpen‘ℂfld)
cnheibor.3 𝑇 = (𝐽t 𝑋)
Assertion
Ref Expression
cnheibor (𝑋 ⊆ ℂ → (𝑇 ∈ Comp ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑇   𝐽,𝑟,𝑥   𝑋,𝑟,𝑥

Proof of Theorem cnheibor
Dummy variables 𝑧 𝑢 𝑓 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . 5 𝐽 = (TopOpen‘ℂfld)
21cnfldhaus 23385 . . . 4 𝐽 ∈ Haus
3 simpl 485 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 ⊆ ℂ)
4 cnheibor.3 . . . . 5 𝑇 = (𝐽t 𝑋)
5 simpr 487 . . . . 5 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑇 ∈ Comp)
64, 5eqeltrrid 2916 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (𝐽t 𝑋) ∈ Comp)
71cnfldtopon 23383 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
87toponunii 21516 . . . . 5 ℂ = 𝐽
98hauscmp 22007 . . . 4 ((𝐽 ∈ Haus ∧ 𝑋 ⊆ ℂ ∧ (𝐽t 𝑋) ∈ Comp) → 𝑋 ∈ (Clsd‘𝐽))
102, 3, 6, 9mp3an2i 1460 . . 3 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 ∈ (Clsd‘𝐽))
111cnfldtop 23384 . . . . . . . . . . 11 𝐽 ∈ Top
128restuni 21762 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ) → 𝑋 = (𝐽t 𝑋))
1311, 3, 12sylancr 589 . . . . . . . . . 10 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 = (𝐽t 𝑋))
144unieqi 4839 . . . . . . . . . 10 𝑇 = (𝐽t 𝑋)
1513, 14syl6eqr 2872 . . . . . . . . 9 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 = 𝑇)
1615eleq2d 2896 . . . . . . . 8 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (𝑥𝑋𝑥 𝑇))
1716biimpar 480 . . . . . . 7 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥 𝑇) → 𝑥𝑋)
18 cnex 10610 . . . . . . . . . . . 12 ℂ ∈ V
19 ssexg 5218 . . . . . . . . . . . 12 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
203, 18, 19sylancl 588 . . . . . . . . . . 11 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 ∈ V)
2120adantr 483 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑋 ∈ V)
22 cnxmet 23373 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
23 0cnd 10626 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 0 ∈ ℂ)
243sselda 3965 . . . . . . . . . . . . . 14 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥 ∈ ℂ)
2524abscld 14788 . . . . . . . . . . . . 13 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (abs‘𝑥) ∈ ℝ)
26 peano2re 10805 . . . . . . . . . . . . 13 ((abs‘𝑥) ∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ)
2725, 26syl 17 . . . . . . . . . . . 12 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((abs‘𝑥) + 1) ∈ ℝ)
2827rexrd 10683 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((abs‘𝑥) + 1) ∈ ℝ*)
291cnfldtopn 23382 . . . . . . . . . . . 12 𝐽 = (MetOpen‘(abs ∘ − ))
3029blopn 23102 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ ((abs‘𝑥) + 1) ∈ ℝ*) → (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∈ 𝐽)
3122, 23, 28, 30mp3an2i 1460 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∈ 𝐽)
32 elrestr 16694 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑋 ∈ V ∧ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∈ 𝐽) → ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ (𝐽t 𝑋))
3311, 21, 31, 32mp3an2i 1460 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ (𝐽t 𝑋))
3433, 4eleqtrrdi 2922 . . . . . . . 8 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ 𝑇)
35 0cn 10625 . . . . . . . . . . . . . 14 0 ∈ ℂ
36 eqid 2819 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3736cnmetdval 23371 . . . . . . . . . . . . . 14 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0(abs ∘ − )𝑥) = (abs‘(0 − 𝑥)))
3835, 37mpan 688 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (0(abs ∘ − )𝑥) = (abs‘(0 − 𝑥)))
39 df-neg 10865 . . . . . . . . . . . . . . 15 -𝑥 = (0 − 𝑥)
4039fveq2i 6666 . . . . . . . . . . . . . 14 (abs‘-𝑥) = (abs‘(0 − 𝑥))
41 absneg 14629 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (abs‘-𝑥) = (abs‘𝑥))
4240, 41syl5eqr 2868 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (abs‘(0 − 𝑥)) = (abs‘𝑥))
4338, 42eqtrd 2854 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (0(abs ∘ − )𝑥) = (abs‘𝑥))
4424, 43syl 17 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (0(abs ∘ − )𝑥) = (abs‘𝑥))
4525ltp1d 11562 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (abs‘𝑥) < ((abs‘𝑥) + 1))
4644, 45eqbrtrd 5079 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (0(abs ∘ − )𝑥) < ((abs‘𝑥) + 1))
47 elbl 22990 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ ((abs‘𝑥) + 1) ∈ ℝ*) → (𝑥 ∈ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < ((abs‘𝑥) + 1))))
4822, 23, 28, 47mp3an2i 1460 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (𝑥 ∈ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < ((abs‘𝑥) + 1))))
4924, 46, 48mpbir2and 711 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥 ∈ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)))
50 simpr 487 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥𝑋)
5149, 50elind 4169 . . . . . . . 8 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋))
5224absge0d 14796 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 0 ≤ (abs‘𝑥))
5325, 52ge0p1rpd 12453 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((abs‘𝑥) + 1) ∈ ℝ+)
54 eqid 2819 . . . . . . . . 9 ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋)
55 oveq2 7156 . . . . . . . . . . 11 (𝑟 = ((abs‘𝑥) + 1) → (0(ball‘(abs ∘ − ))𝑟) = (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)))
5655ineq1d 4186 . . . . . . . . . 10 (𝑟 = ((abs‘𝑥) + 1) → ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋))
5756rspceeqv 3636 . . . . . . . . 9 ((((abs‘𝑥) + 1) ∈ ℝ+ ∧ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋)) → ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))
5853, 54, 57sylancl 588 . . . . . . . 8 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))
59 eleq2 2899 . . . . . . . . . 10 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → (𝑥𝑢𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋)))
60 eqeq1 2823 . . . . . . . . . . 11 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → (𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ↔ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6160rexbidv 3295 . . . . . . . . . 10 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → (∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ↔ ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6259, 61anbi12d 632 . . . . . . . . 9 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → ((𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)) ↔ (𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∧ ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))))
6362rspcev 3621 . . . . . . . 8 ((((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ 𝑇 ∧ (𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∧ ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))) → ∃𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6434, 51, 58, 63syl12anc 834 . . . . . . 7 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ∃𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6517, 64syldan 593 . . . . . 6 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥 𝑇) → ∃𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6665ralrimiva 3180 . . . . 5 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → ∀𝑥 𝑇𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
67 eqid 2819 . . . . . 6 𝑇 = 𝑇
68 oveq2 7156 . . . . . . . 8 (𝑟 = (𝑓𝑢) → (0(ball‘(abs ∘ − ))𝑟) = (0(ball‘(abs ∘ − ))(𝑓𝑢)))
6968ineq1d 4186 . . . . . . 7 (𝑟 = (𝑓𝑢) → ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))
7069eqeq2d 2830 . . . . . 6 (𝑟 = (𝑓𝑢) → (𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ↔ 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋)))
7167, 70cmpcovf 21991 . . . . 5 ((𝑇 ∈ Comp ∧ ∀𝑥 𝑇𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))) → ∃𝑠 ∈ (𝒫 𝑇 ∩ Fin)( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))))
725, 66, 71syl2anc 586 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → ∃𝑠 ∈ (𝒫 𝑇 ∩ Fin)( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))))
7315ad4antr 730 . . . . . . . . . . . . . 14 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → 𝑋 = 𝑇)
74 simpllr 774 . . . . . . . . . . . . . 14 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → 𝑇 = 𝑠)
7573, 74eqtrd 2854 . . . . . . . . . . . . 13 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → 𝑋 = 𝑠)
7675eleq2d 2896 . . . . . . . . . . . 12 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (𝑥𝑋𝑥 𝑠))
77 eluni2 4834 . . . . . . . . . . . 12 (𝑥 𝑠 ↔ ∃𝑧𝑠 𝑥𝑧)
7876, 77syl6bb 289 . . . . . . . . . . 11 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (𝑥𝑋 ↔ ∃𝑧𝑠 𝑥𝑧))
79 elssuni 4859 . . . . . . . . . . . . . . . . . 18 (𝑧𝑠𝑧 𝑠)
8079ad2antrl 726 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧 𝑠)
8175adantr 483 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑋 = 𝑠)
8280, 81sseqtrrd 4006 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧𝑋)
83 simp-6l 785 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑋 ⊆ ℂ)
8482, 83sstrd 3975 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧 ⊆ ℂ)
85 simprr 771 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥𝑧)
8684, 85sseldd 3966 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥 ∈ ℂ)
8786abscld 14788 . . . . . . . . . . . . 13 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) ∈ ℝ)
88 simplrl 775 . . . . . . . . . . . . 13 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑟 ∈ ℝ)
89 simprl 769 . . . . . . . . . . . . . . . . 17 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → 𝑓:𝑠⟶ℝ+)
9089ad2antrr 724 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑓:𝑠⟶ℝ+)
91 simprl 769 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧𝑠)
9290, 91ffvelrnd 6845 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ∈ ℝ+)
9392rpred 12423 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ∈ ℝ)
9486, 43syl 17 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (0(abs ∘ − )𝑥) = (abs‘𝑥))
95 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑧𝑢 = 𝑧)
96 fveq2 6663 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑧 → (𝑓𝑢) = (𝑓𝑧))
9796oveq2d 7164 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑧 → (0(ball‘(abs ∘ − ))(𝑓𝑢)) = (0(ball‘(abs ∘ − ))(𝑓𝑧)))
9897ineq1d 4186 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑧 → ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋))
9995, 98eqeq12d 2835 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑧 → (𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋) ↔ 𝑧 = ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋)))
100 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))
101100ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))
10299, 101, 91rspcdva 3623 . . . . . . . . . . . . . . . . . . 19 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧 = ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋))
10385, 102eleqtrd 2913 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥 ∈ ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋))
104103elin1d 4173 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥 ∈ (0(ball‘(abs ∘ − ))(𝑓𝑧)))
105 0cnd 10626 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 0 ∈ ℂ)
10692rpxrd 12424 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ∈ ℝ*)
107 elbl 22990 . . . . . . . . . . . . . . . . . 18 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (𝑓𝑧) ∈ ℝ*) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(𝑓𝑧)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < (𝑓𝑧))))
10822, 105, 106, 107mp3an2i 1460 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(𝑓𝑧)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < (𝑓𝑧))))
109104, 108mpbid 234 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < (𝑓𝑧)))
110109simprd 498 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (0(abs ∘ − )𝑥) < (𝑓𝑧))
11194, 110eqbrtrrd 5081 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) < (𝑓𝑧))
11296breq1d 5067 . . . . . . . . . . . . . . 15 (𝑢 = 𝑧 → ((𝑓𝑢) ≤ 𝑟 ↔ (𝑓𝑧) ≤ 𝑟))
113 simplrr 776 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)
114112, 113, 91rspcdva 3623 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ≤ 𝑟)
11587, 93, 88, 111, 114ltletrd 10792 . . . . . . . . . . . . 13 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) < 𝑟)
11687, 88, 115ltled 10780 . . . . . . . . . . . 12 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) ≤ 𝑟)
117116rexlimdvaa 3283 . . . . . . . . . . 11 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (∃𝑧𝑠 𝑥𝑧 → (abs‘𝑥) ≤ 𝑟))
11878, 117sylbid 242 . . . . . . . . . 10 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (𝑥𝑋 → (abs‘𝑥) ≤ 𝑟))
119118ralrimiv 3179 . . . . . . . . 9 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)
120 simpllr 774 . . . . . . . . . . 11 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → 𝑠 ∈ (𝒫 𝑇 ∩ Fin))
121120elin2d 4174 . . . . . . . . . 10 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → 𝑠 ∈ Fin)
122 ffvelrn 6842 . . . . . . . . . . . . 13 ((𝑓:𝑠⟶ℝ+𝑢𝑠) → (𝑓𝑢) ∈ ℝ+)
123122rpred 12423 . . . . . . . . . . . 12 ((𝑓:𝑠⟶ℝ+𝑢𝑠) → (𝑓𝑢) ∈ ℝ)
124123ralrimiva 3180 . . . . . . . . . . 11 (𝑓:𝑠⟶ℝ+ → ∀𝑢𝑠 (𝑓𝑢) ∈ ℝ)
125124ad2antrl 726 . . . . . . . . . 10 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∀𝑢𝑠 (𝑓𝑢) ∈ ℝ)
126 fimaxre3 11579 . . . . . . . . . 10 ((𝑠 ∈ Fin ∧ ∀𝑢𝑠 (𝑓𝑢) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)
127121, 125, 126syl2anc 586 . . . . . . . . 9 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)
128119, 127reximddv 3273 . . . . . . . 8 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)
129128ex 415 . . . . . . 7 ((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) → ((𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋)) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
130129exlimdv 1928 . . . . . 6 ((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) → (∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋)) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
131130expimpd 456 . . . . 5 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) → (( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
132131rexlimdva 3282 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (∃𝑠 ∈ (𝒫 𝑇 ∩ Fin)( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
13372, 132mpd 15 . . 3 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)
13410, 133jca 514 . 2 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
135 eqid 2819 . . . . . 6 (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧))) = (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧)))
136 eqid 2819 . . . . . 6 ((𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧))) “ ((-𝑟[,]𝑟) × (-𝑟[,]𝑟))) = ((𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧))) “ ((-𝑟[,]𝑟) × (-𝑟[,]𝑟)))
1371, 4, 135, 136cnheiborlem 23550 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑟 ∈ ℝ ∧ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)) → 𝑇 ∈ Comp)
138137rexlimdvaa 3283 . . . 4 (𝑋 ∈ (Clsd‘𝐽) → (∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟𝑇 ∈ Comp))
139138imp 409 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟) → 𝑇 ∈ Comp)
140139adantl 484 . 2 ((𝑋 ⊆ ℂ ∧ (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)) → 𝑇 ∈ Comp)
141134, 140impbida 799 1 (𝑋 ⊆ ℂ → (𝑇 ∈ Comp ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wex 1774  wcel 2108  wral 3136  wrex 3137  Vcvv 3493  cin 3933  wss 3934  𝒫 cpw 4537   cuni 4830   class class class wbr 5057   × cxp 5546  cima 5551  ccom 5552  wf 6344  cfv 6348  (class class class)co 7148  cmpo 7150  Fincfn 8501  cc 10527  cr 10528  0cc0 10529  1c1 10530  ici 10531   + caddc 10532   · cmul 10534  *cxr 10666   < clt 10667  cle 10668  cmin 10862  -cneg 10863  +crp 12381  [,]cicc 12733  abscabs 14585  t crest 16686  TopOpenctopn 16687  ∞Metcxmet 20522  ballcbl 20524  fldccnfld 20537  Topctop 21493  Clsdccld 21616  Hauscha 21908  Compccmp 21986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-icc 12737  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-cls 21621  df-cn 21827  df-cnp 21828  df-haus 21915  df-cmp 21987  df-tx 22162  df-hmeo 22355  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478
This theorem is referenced by:  cnllycmp  23552  cncmet  23917  ftalem3  25644
  Copyright terms: Public domain W3C validator