MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheiborlem Structured version   Visualization version   GIF version

Theorem cnheiborlem 23561
Description: Lemma for cnheibor 23562. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2 𝐽 = (TopOpen‘ℂfld)
cnheibor.3 𝑇 = (𝐽t 𝑋)
cnheibor.4 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
cnheibor.5 𝑌 = (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
Assertion
Ref Expression
cnheiborlem ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑇 ∈ Comp)
Distinct variable groups:   𝑧,𝐹   𝑧,𝑅   𝑥,𝑦,𝑧,𝑇   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem cnheiborlem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . 5 𝐽 = (TopOpen‘ℂfld)
21cnfldtop 23395 . . . 4 𝐽 ∈ Top
3 cnheibor.4 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
43cnref1o 12387 . . . . . . . . 9 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
5 f1ofn 6619 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹 Fn (ℝ × ℝ))
6 elpreima 6831 . . . . . . . . 9 (𝐹 Fn (ℝ × ℝ) → (𝑢 ∈ (𝐹𝑋) ↔ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)))
74, 5, 6mp2b 10 . . . . . . . 8 (𝑢 ∈ (𝐹𝑋) ↔ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋))
8 1st2nd2 7731 . . . . . . . . . . 11 (𝑢 ∈ (ℝ × ℝ) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
98ad2antrl 726 . . . . . . . . . 10 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
10 xp1st 7724 . . . . . . . . . . . . 13 (𝑢 ∈ (ℝ × ℝ) → (1st𝑢) ∈ ℝ)
1110ad2antrl 726 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ ℝ)
1211recnd 10672 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ ℂ)
1312abscld 14799 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ∈ ℝ)
141cnfldtopon 23394 . . . . . . . . . . . . . . . . . . . . 21 𝐽 ∈ (TopOn‘ℂ)
1514toponunii 21527 . . . . . . . . . . . . . . . . . . . 20 ℂ = 𝐽
1615cldss 21640 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ (Clsd‘𝐽) → 𝑋 ⊆ ℂ)
1716adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ ℂ)
1817adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑋 ⊆ ℂ)
19 simprr 771 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹𝑢) ∈ 𝑋)
2018, 19sseldd 3971 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹𝑢) ∈ ℂ)
2120abscld 14799 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(𝐹𝑢)) ∈ ℝ)
22 simplrl 775 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑅 ∈ ℝ)
23 simprl 769 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 ∈ (ℝ × ℝ))
24 f1ocnvfv1 7036 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ 𝑢 ∈ (ℝ × ℝ)) → (𝐹‘(𝐹𝑢)) = 𝑢)
254, 23, 24sylancr 589 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹‘(𝐹𝑢)) = 𝑢)
26 fveq2 6673 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝐹𝑢) → (ℜ‘𝑧) = (ℜ‘(𝐹𝑢)))
27 fveq2 6673 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝐹𝑢) → (ℑ‘𝑧) = (ℑ‘(𝐹𝑢)))
2826, 27opeq12d 4814 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝐹𝑢) → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
293cnrecnv 14527 . . . . . . . . . . . . . . . . . . . . . 22 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
30 opex 5359 . . . . . . . . . . . . . . . . . . . . . 22 ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩ ∈ V
3128, 29, 30fvmpt 6771 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑢) ∈ ℂ → (𝐹‘(𝐹𝑢)) = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3220, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹‘(𝐹𝑢)) = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3325, 32eqtr3d 2861 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3433fveq2d 6677 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) = (1st ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩))
35 fvex 6686 . . . . . . . . . . . . . . . . . . 19 (ℜ‘(𝐹𝑢)) ∈ V
36 fvex 6686 . . . . . . . . . . . . . . . . . . 19 (ℑ‘(𝐹𝑢)) ∈ V
3735, 36op1st 7700 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩) = (ℜ‘(𝐹𝑢))
3834, 37syl6eq 2875 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) = (ℜ‘(𝐹𝑢)))
3938fveq2d 6677 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) = (abs‘(ℜ‘(𝐹𝑢))))
40 absrele 14671 . . . . . . . . . . . . . . . . 17 ((𝐹𝑢) ∈ ℂ → (abs‘(ℜ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
4120, 40syl 17 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(ℜ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
4239, 41eqbrtrd 5091 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ≤ (abs‘(𝐹𝑢)))
43 fveq2 6673 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹𝑢) → (abs‘𝑧) = (abs‘(𝐹𝑢)))
4443breq1d 5079 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑢) → ((abs‘𝑧) ≤ 𝑅 ↔ (abs‘(𝐹𝑢)) ≤ 𝑅))
45 simplrr 776 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)
4644, 45, 19rspcdva 3628 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(𝐹𝑢)) ≤ 𝑅)
4713, 21, 22, 42, 46letrd 10800 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ≤ 𝑅)
4811, 22absled 14793 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((abs‘(1st𝑢)) ≤ 𝑅 ↔ (-𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
4947, 48mpbid 234 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (-𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅))
5049simpld 497 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ≤ (1st𝑢))
5149simprd 498 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ≤ 𝑅)
52 renegcl 10952 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
5322, 52syl 17 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ∈ ℝ)
54 elicc2 12804 . . . . . . . . . . . . 13 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((1st𝑢) ∈ (-𝑅[,]𝑅) ↔ ((1st𝑢) ∈ ℝ ∧ -𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
5553, 22, 54syl2anc 586 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((1st𝑢) ∈ (-𝑅[,]𝑅) ↔ ((1st𝑢) ∈ ℝ ∧ -𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
5611, 50, 51, 55mpbir3and 1338 . . . . . . . . . . 11 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ (-𝑅[,]𝑅))
57 xp2nd 7725 . . . . . . . . . . . . 13 (𝑢 ∈ (ℝ × ℝ) → (2nd𝑢) ∈ ℝ)
5857ad2antrl 726 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ ℝ)
5958recnd 10672 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ ℂ)
6059abscld 14799 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ∈ ℝ)
6133fveq2d 6677 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) = (2nd ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩))
6235, 36op2nd 7701 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩) = (ℑ‘(𝐹𝑢))
6361, 62syl6eq 2875 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) = (ℑ‘(𝐹𝑢)))
6463fveq2d 6677 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) = (abs‘(ℑ‘(𝐹𝑢))))
65 absimle 14672 . . . . . . . . . . . . . . . . 17 ((𝐹𝑢) ∈ ℂ → (abs‘(ℑ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
6620, 65syl 17 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(ℑ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
6764, 66eqbrtrd 5091 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ≤ (abs‘(𝐹𝑢)))
6860, 21, 22, 67, 46letrd 10800 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ≤ 𝑅)
6958, 22absled 14793 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((abs‘(2nd𝑢)) ≤ 𝑅 ↔ (-𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7068, 69mpbid 234 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (-𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅))
7170simpld 497 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ≤ (2nd𝑢))
7270simprd 498 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ≤ 𝑅)
73 elicc2 12804 . . . . . . . . . . . . 13 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((2nd𝑢) ∈ (-𝑅[,]𝑅) ↔ ((2nd𝑢) ∈ ℝ ∧ -𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7453, 22, 73syl2anc 586 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((2nd𝑢) ∈ (-𝑅[,]𝑅) ↔ ((2nd𝑢) ∈ ℝ ∧ -𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7558, 71, 72, 74mpbir3and 1338 . . . . . . . . . . 11 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ (-𝑅[,]𝑅))
7656, 75opelxpd 5596 . . . . . . . . . 10 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ⟨(1st𝑢), (2nd𝑢)⟩ ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
779, 76eqeltrd 2916 . . . . . . . . 9 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
7877ex 415 . . . . . . . 8 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
797, 78syl5bi 244 . . . . . . 7 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝑢 ∈ (𝐹𝑋) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
8079ssrdv 3976 . . . . . 6 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
81 f1ofun 6620 . . . . . . . 8 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → Fun 𝐹)
824, 81ax-mp 5 . . . . . . 7 Fun 𝐹
83 f1ofo 6625 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:(ℝ × ℝ)–onto→ℂ)
84 forn 6596 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–onto→ℂ → ran 𝐹 = ℂ)
854, 83, 84mp2b 10 . . . . . . . 8 ran 𝐹 = ℂ
8617, 85sseqtrrdi 4021 . . . . . . 7 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ ran 𝐹)
87 funimass1 6439 . . . . . . 7 ((Fun 𝐹𝑋 ⊆ ran 𝐹) → ((𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))))
8882, 86, 87sylancr 589 . . . . . 6 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))))
8980, 88mpd 15 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
90 cnheibor.5 . . . . 5 𝑌 = (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
9189, 90sseqtrrdi 4021 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋𝑌)
92 eqid 2824 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
933, 92, 1cnrehmeo 23560 . . . . . . 7 𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽)
94 imaexg 7623 . . . . . . 7 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) → (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ V)
9593, 94ax-mp 5 . . . . . 6 (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ V
9690, 95eqeltri 2912 . . . . 5 𝑌 ∈ V
9796a1i 11 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑌 ∈ V)
98 restabs 21776 . . . 4 ((𝐽 ∈ Top ∧ 𝑋𝑌𝑌 ∈ V) → ((𝐽t 𝑌) ↾t 𝑋) = (𝐽t 𝑋))
992, 91, 97, 98mp3an2i 1462 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) = (𝐽t 𝑋))
100 cnheibor.3 . . 3 𝑇 = (𝐽t 𝑋)
10199, 100syl6eqr 2877 . 2 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) = 𝑇)
10290oveq2i 7170 . . . . 5 (𝐽t 𝑌) = (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
103 ishmeo 22370 . . . . . . . 8 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) ↔ (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn ((topGen‘ran (,)) ×t (topGen‘ran (,))))))
10493, 103mpbi 232 . . . . . . 7 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn ((topGen‘ran (,)) ×t (topGen‘ran (,)))))
105104simpli 486 . . . . . 6 𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽)
106 iccssre 12821 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
10752, 106mpancom 686 . . . . . . . . . 10 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
1081, 92rerest 23415 . . . . . . . . . 10 ((-𝑅[,]𝑅) ⊆ ℝ → (𝐽t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
109107, 108syl 17 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝐽t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
110109, 109oveq12d 7177 . . . . . . . 8 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))))
111 retop 23373 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
112 ovex 7192 . . . . . . . . 9 (-𝑅[,]𝑅) ∈ V
113 txrest 22242 . . . . . . . . 9 ((((topGen‘ran (,)) ∈ Top ∧ (topGen‘ran (,)) ∈ Top) ∧ ((-𝑅[,]𝑅) ∈ V ∧ (-𝑅[,]𝑅) ∈ V)) → (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))))
114111, 111, 112, 112, 113mp4an 691 . . . . . . . 8 (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
115110, 114syl6eqr 2877 . . . . . . 7 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
116 eqid 2824 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))
11792, 116icccmp 23436 . . . . . . . . . 10 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ∈ Comp)
11852, 117mpancom 686 . . . . . . . . 9 (𝑅 ∈ ℝ → ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ∈ Comp)
119109, 118eqeltrd 2916 . . . . . . . 8 (𝑅 ∈ ℝ → (𝐽t (-𝑅[,]𝑅)) ∈ Comp)
120 txcmp 22254 . . . . . . . 8 (((𝐽t (-𝑅[,]𝑅)) ∈ Comp ∧ (𝐽t (-𝑅[,]𝑅)) ∈ Comp) → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) ∈ Comp)
121119, 119, 120syl2anc 586 . . . . . . 7 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) ∈ Comp)
122115, 121eqeltrrd 2917 . . . . . 6 (𝑅 ∈ ℝ → (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ Comp)
123 imacmp 22008 . . . . . 6 ((𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ Comp) → (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))) ∈ Comp)
124105, 122, 123sylancr 589 . . . . 5 (𝑅 ∈ ℝ → (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))) ∈ Comp)
125102, 124eqeltrid 2920 . . . 4 (𝑅 ∈ ℝ → (𝐽t 𝑌) ∈ Comp)
126125ad2antrl 726 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝐽t 𝑌) ∈ Comp)
127 imassrn 5943 . . . . . 6 (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ⊆ ran 𝐹
12890, 127eqsstri 4004 . . . . 5 𝑌 ⊆ ran 𝐹
129 f1of 6618 . . . . . 6 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:(ℝ × ℝ)⟶ℂ)
130 frn 6523 . . . . . 6 (𝐹:(ℝ × ℝ)⟶ℂ → ran 𝐹 ⊆ ℂ)
1314, 129, 130mp2b 10 . . . . 5 ran 𝐹 ⊆ ℂ
132128, 131sstri 3979 . . . 4 𝑌 ⊆ ℂ
133 simpl 485 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ∈ (Clsd‘𝐽))
13415restcldi 21784 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ∈ (Clsd‘𝐽) ∧ 𝑋𝑌) → 𝑋 ∈ (Clsd‘(𝐽t 𝑌)))
135132, 133, 91, 134mp3an2i 1462 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ∈ (Clsd‘(𝐽t 𝑌)))
136 cmpcld 22013 . . 3 (((𝐽t 𝑌) ∈ Comp ∧ 𝑋 ∈ (Clsd‘(𝐽t 𝑌))) → ((𝐽t 𝑌) ↾t 𝑋) ∈ Comp)
137126, 135, 136syl2anc 586 . 2 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) ∈ Comp)
138101, 137eqeltrrd 2917 1 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑇 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  wss 3939  cop 4576   class class class wbr 5069   × cxp 5556  ccnv 5557  ran crn 5559  cima 5561  Fun wfun 6352   Fn wfn 6353  wf 6354  ontowfo 6356  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  cmpo 7161  1st c1st 7690  2nd c2nd 7691  cc 10538  cr 10539  ici 10542   + caddc 10543   · cmul 10545  cle 10679  -cneg 10874  (,)cioo 12741  [,]cicc 12744  cre 14459  cim 14460  abscabs 14596  t crest 16697  TopOpenctopn 16698  topGenctg 16714  fldccnfld 20548  Topctop 21504  Clsdccld 21627   Cn ccn 21835  Compccmp 21997   ×t ctx 22171  Homeochmeo 22364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-cn 21838  df-cnp 21839  df-cmp 21998  df-tx 22173  df-hmeo 22366  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489
This theorem is referenced by:  cnheibor  23562
  Copyright terms: Public domain W3C validator