MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnlimc Structured version   Visualization version   GIF version

Theorem cnlimc 23558
Description: 𝐹 is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
cnlimc (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem cnlimc
StepHypRef Expression
1 ssid 3603 . . . 4 ℂ ⊆ ℂ
2 eqid 2621 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3 eqid 2621 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
42cnfldtopon 22496 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
54toponunii 20647 . . . . . . . 8 ℂ = (TopOpen‘ℂfld)
65restid 16015 . . . . . . 7 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
74, 6ax-mp 5 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
87eqcomi 2630 . . . . 5 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
92, 3, 8cncfcn 22620 . . . 4 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
101, 9mpan2 706 . . 3 (𝐴 ⊆ ℂ → (𝐴cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)))
1110eleq2d 2684 . 2 (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) ↔ 𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld))))
12 resttopon 20875 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴))
134, 12mpan 705 . . 3 (𝐴 ⊆ ℂ → ((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴))
14 cncnp 20994 . . 3 ((((TopOpen‘ℂfld) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))))
1513, 4, 14sylancl 693 . 2 (𝐴 ⊆ ℂ → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐴) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥))))
162, 3cnplimc 23557 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
1716baibd 947 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹𝑥) ∈ (𝐹 lim 𝑥)))
1817an32s 845 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝐹𝑥) ∈ (𝐹 lim 𝑥)))
1918ralbidva 2979 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) → (∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥)))
2019pm5.32da 672 . 2 (𝐴 ⊆ ℂ → ((𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝐴) CnP (TopOpen‘ℂfld))‘𝑥)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
2111, 15, 203bitrd 294 1 (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wss 3555  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  t crest 16002  TopOpenctopn 16003  fldccnfld 19665  TopOnctopon 20618   Cn ccn 20938   CnP ccnp 20939  cnccncf 22587   lim climc 23532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-topn 16005  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cn 20941  df-cnp 20942  df-xms 22035  df-ms 22036  df-cncf 22589  df-limc 23536
This theorem is referenced by:  cnlimci  23559  fourierdlem62  39692
  Copyright terms: Public domain W3C validator