HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadji Structured version   Visualization version   GIF version

Theorem cnlnadji 28796
Description: Every continuous linear operator has an adjoint. Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadj.1 𝑇 ∈ LinOp
cnlnadj.2 𝑇 ∈ ContOp
Assertion
Ref Expression
cnlnadji 𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡𝑦))
Distinct variable group:   𝑥,𝑡,𝑦,𝑇

Proof of Theorem cnlnadji
Dummy variables 𝑓 𝑔 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadj.1 . 2 𝑇 ∈ LinOp
2 cnlnadj.2 . 2 𝑇 ∈ ContOp
3 eqid 2621 . 2 (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑧)) = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑧))
4 oveq2 6615 . . . . 5 (𝑓 = 𝑤 → (𝑣 ·ih 𝑓) = (𝑣 ·ih 𝑤))
54eqeq2d 2631 . . . 4 (𝑓 = 𝑤 → (((𝑇𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓) ↔ ((𝑇𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑤)))
65ralbidv 2980 . . 3 (𝑓 = 𝑤 → (∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓) ↔ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑤)))
76cbvriotav 6579 . 2 (𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)) = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑤))
8 eqid 2621 . 2 (𝑧 ∈ ℋ ↦ (𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓))) = (𝑧 ∈ ℋ ↦ (𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)))
91, 2, 3, 7, 8cnlnadjlem9 28795 1 𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡𝑦))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  wral 2907  wrex 2908  cin 3555  cmpt 4675  cfv 5849  crio 6567  (class class class)co 6607  chil 27637   ·ih csp 27640  ContOpccop 27664  LinOpclo 27665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cc 9204  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963  ax-hilex 27717  ax-hfvadd 27718  ax-hvcom 27719  ax-hvass 27720  ax-hv0cl 27721  ax-hvaddid 27722  ax-hfvmul 27723  ax-hvmulid 27724  ax-hvmulass 27725  ax-hvdistr1 27726  ax-hvdistr2 27727  ax-hvmul0 27728  ax-hfi 27797  ax-his1 27800  ax-his2 27801  ax-his3 27802  ax-his4 27803  ax-hcompl 27920
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-omul 7513  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-fi 8264  df-sup 8295  df-inf 8296  df-oi 8362  df-card 8712  df-acn 8715  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-ioo 12124  df-ico 12126  df-icc 12127  df-fz 12272  df-fzo 12410  df-fl 12536  df-seq 12745  df-exp 12804  df-hash 13061  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-clim 14156  df-rlim 14157  df-sum 14354  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-hom 15890  df-cco 15891  df-rest 16007  df-topn 16008  df-0g 16026  df-gsum 16027  df-topgen 16028  df-pt 16029  df-prds 16032  df-xrs 16086  df-qtop 16091  df-imas 16092  df-xps 16094  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-mulg 17465  df-cntz 17674  df-cmn 18119  df-psmet 19660  df-xmet 19661  df-met 19662  df-bl 19663  df-mopn 19664  df-fbas 19665  df-fg 19666  df-cnfld 19669  df-top 20621  df-topon 20638  df-topsp 20651  df-bases 20664  df-cld 20736  df-ntr 20737  df-cls 20738  df-nei 20815  df-cn 20944  df-cnp 20945  df-lm 20946  df-t1 21031  df-haus 21032  df-tx 21278  df-hmeo 21471  df-fil 21563  df-fm 21655  df-flim 21656  df-flf 21657  df-xms 22038  df-ms 22039  df-tms 22040  df-cfil 22966  df-cau 22967  df-cmet 22968  df-grpo 27208  df-gid 27209  df-ginv 27210  df-gdiv 27211  df-ablo 27260  df-vc 27275  df-nv 27308  df-va 27311  df-ba 27312  df-sm 27313  df-0v 27314  df-vs 27315  df-nmcv 27316  df-ims 27317  df-dip 27417  df-ssp 27438  df-ph 27529  df-cbn 27580  df-hnorm 27686  df-hba 27687  df-hvsub 27689  df-hlim 27690  df-hcau 27691  df-sh 27925  df-ch 27939  df-oc 27970  df-ch0 27971  df-nmop 28559  df-cnop 28560  df-lnop 28561  df-unop 28563  df-nmfn 28565  df-nlfn 28566  df-cnfn 28567  df-lnfn 28568
This theorem is referenced by:  cnlnadjeui  28797
  Copyright terms: Public domain W3C validator