Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem7 Structured version   Visualization version   GIF version

 Description: Lemma for cnlnadji 28784. Helper lemma to show that 𝐹 is continuous. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
cnlnadjlem.4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
cnlnadjlem.5 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
Assertion
Ref Expression
cnlnadjlem7 (𝐴 ∈ ℋ → (norm‘(𝐹𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
Distinct variable groups:   𝑣,𝑔,𝑤,𝑦,𝐴   𝑤,𝐹   𝑇,𝑔,𝑣,𝑤,𝑦   𝑣,𝐺,𝑤
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑔)   𝐹(𝑦,𝑣,𝑔)   𝐺(𝑦,𝑔)

StepHypRef Expression
1 breq1 4616 . 2 ((norm‘(𝐹𝐴)) = 0 → ((norm‘(𝐹𝐴)) ≤ ((normop𝑇) · (norm𝐴)) ↔ 0 ≤ ((normop𝑇) · (norm𝐴))))
2 cnlnadjlem.1 . . . . . . . . . 10 𝑇 ∈ LinOp
3 cnlnadjlem.2 . . . . . . . . . 10 𝑇 ∈ ContOp
4 cnlnadjlem.3 . . . . . . . . . 10 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
5 cnlnadjlem.4 . . . . . . . . . 10 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
6 cnlnadjlem.5 . . . . . . . . . 10 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
72, 3, 4, 5, 6cnlnadjlem4 28778 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝐹𝐴) ∈ ℋ)
82lnopfi 28677 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
98ffvelrni 6314 . . . . . . . . 9 ((𝐹𝐴) ∈ ℋ → (𝑇‘(𝐹𝐴)) ∈ ℋ)
107, 9syl 17 . . . . . . . 8 (𝐴 ∈ ℋ → (𝑇‘(𝐹𝐴)) ∈ ℋ)
11 hicl 27786 . . . . . . . 8 (((𝑇‘(𝐹𝐴)) ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘(𝐹𝐴)) ·ih 𝐴) ∈ ℂ)
1210, 11mpancom 702 . . . . . . 7 (𝐴 ∈ ℋ → ((𝑇‘(𝐹𝐴)) ·ih 𝐴) ∈ ℂ)
1312abscld 14109 . . . . . 6 (𝐴 ∈ ℋ → (abs‘((𝑇‘(𝐹𝐴)) ·ih 𝐴)) ∈ ℝ)
14 normcl 27831 . . . . . . . 8 ((𝑇‘(𝐹𝐴)) ∈ ℋ → (norm‘(𝑇‘(𝐹𝐴))) ∈ ℝ)
1510, 14syl 17 . . . . . . 7 (𝐴 ∈ ℋ → (norm‘(𝑇‘(𝐹𝐴))) ∈ ℝ)
16 normcl 27831 . . . . . . 7 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
1715, 16remulcld 10014 . . . . . 6 (𝐴 ∈ ℋ → ((norm‘(𝑇‘(𝐹𝐴))) · (norm𝐴)) ∈ ℝ)
182, 3nmcopexi 28735 . . . . . . . 8 (normop𝑇) ∈ ℝ
19 normcl 27831 . . . . . . . . 9 ((𝐹𝐴) ∈ ℋ → (norm‘(𝐹𝐴)) ∈ ℝ)
207, 19syl 17 . . . . . . . 8 (𝐴 ∈ ℋ → (norm‘(𝐹𝐴)) ∈ ℝ)
21 remulcl 9965 . . . . . . . 8 (((normop𝑇) ∈ ℝ ∧ (norm‘(𝐹𝐴)) ∈ ℝ) → ((normop𝑇) · (norm‘(𝐹𝐴))) ∈ ℝ)
2218, 20, 21sylancr 694 . . . . . . 7 (𝐴 ∈ ℋ → ((normop𝑇) · (norm‘(𝐹𝐴))) ∈ ℝ)
2322, 16remulcld 10014 . . . . . 6 (𝐴 ∈ ℋ → (((normop𝑇) · (norm‘(𝐹𝐴))) · (norm𝐴)) ∈ ℝ)
24 bcs 27887 . . . . . . 7 (((𝑇‘(𝐹𝐴)) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (abs‘((𝑇‘(𝐹𝐴)) ·ih 𝐴)) ≤ ((norm‘(𝑇‘(𝐹𝐴))) · (norm𝐴)))
2510, 24mpancom 702 . . . . . 6 (𝐴 ∈ ℋ → (abs‘((𝑇‘(𝐹𝐴)) ·ih 𝐴)) ≤ ((norm‘(𝑇‘(𝐹𝐴))) · (norm𝐴)))
26 normge0 27832 . . . . . . 7 (𝐴 ∈ ℋ → 0 ≤ (norm𝐴))
272, 3nmcoplbi 28736 . . . . . . . 8 ((𝐹𝐴) ∈ ℋ → (norm‘(𝑇‘(𝐹𝐴))) ≤ ((normop𝑇) · (norm‘(𝐹𝐴))))
287, 27syl 17 . . . . . . 7 (𝐴 ∈ ℋ → (norm‘(𝑇‘(𝐹𝐴))) ≤ ((normop𝑇) · (norm‘(𝐹𝐴))))
2915, 22, 16, 26, 28lemul1ad 10907 . . . . . 6 (𝐴 ∈ ℋ → ((norm‘(𝑇‘(𝐹𝐴))) · (norm𝐴)) ≤ (((normop𝑇) · (norm‘(𝐹𝐴))) · (norm𝐴)))
3013, 17, 23, 25, 29letrd 10138 . . . . 5 (𝐴 ∈ ℋ → (abs‘((𝑇‘(𝐹𝐴)) ·ih 𝐴)) ≤ (((normop𝑇) · (norm‘(𝐹𝐴))) · (norm𝐴)))
312, 3, 4, 5, 6cnlnadjlem5 28779 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ (𝐹𝐴) ∈ ℋ) → ((𝑇‘(𝐹𝐴)) ·ih 𝐴) = ((𝐹𝐴) ·ih (𝐹𝐴)))
327, 31mpdan 701 . . . . . . 7 (𝐴 ∈ ℋ → ((𝑇‘(𝐹𝐴)) ·ih 𝐴) = ((𝐹𝐴) ·ih (𝐹𝐴)))
3332fveq2d 6152 . . . . . 6 (𝐴 ∈ ℋ → (abs‘((𝑇‘(𝐹𝐴)) ·ih 𝐴)) = (abs‘((𝐹𝐴) ·ih (𝐹𝐴))))
34 hiidrcl 27801 . . . . . . . 8 ((𝐹𝐴) ∈ ℋ → ((𝐹𝐴) ·ih (𝐹𝐴)) ∈ ℝ)
357, 34syl 17 . . . . . . 7 (𝐴 ∈ ℋ → ((𝐹𝐴) ·ih (𝐹𝐴)) ∈ ℝ)
36 hiidge0 27804 . . . . . . . 8 ((𝐹𝐴) ∈ ℋ → 0 ≤ ((𝐹𝐴) ·ih (𝐹𝐴)))
377, 36syl 17 . . . . . . 7 (𝐴 ∈ ℋ → 0 ≤ ((𝐹𝐴) ·ih (𝐹𝐴)))
3835, 37absidd 14095 . . . . . 6 (𝐴 ∈ ℋ → (abs‘((𝐹𝐴) ·ih (𝐹𝐴))) = ((𝐹𝐴) ·ih (𝐹𝐴)))
39 normsq 27840 . . . . . . . 8 ((𝐹𝐴) ∈ ℋ → ((norm‘(𝐹𝐴))↑2) = ((𝐹𝐴) ·ih (𝐹𝐴)))
407, 39syl 17 . . . . . . 7 (𝐴 ∈ ℋ → ((norm‘(𝐹𝐴))↑2) = ((𝐹𝐴) ·ih (𝐹𝐴)))
4120recnd 10012 . . . . . . . 8 (𝐴 ∈ ℋ → (norm‘(𝐹𝐴)) ∈ ℂ)
4241sqvald 12945 . . . . . . 7 (𝐴 ∈ ℋ → ((norm‘(𝐹𝐴))↑2) = ((norm‘(𝐹𝐴)) · (norm‘(𝐹𝐴))))
4340, 42eqtr3d 2657 . . . . . 6 (𝐴 ∈ ℋ → ((𝐹𝐴) ·ih (𝐹𝐴)) = ((norm‘(𝐹𝐴)) · (norm‘(𝐹𝐴))))
4433, 38, 433eqtrd 2659 . . . . 5 (𝐴 ∈ ℋ → (abs‘((𝑇‘(𝐹𝐴)) ·ih 𝐴)) = ((norm‘(𝐹𝐴)) · (norm‘(𝐹𝐴))))
4516recnd 10012 . . . . . 6 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℂ)
4618recni 9996 . . . . . . 7 (normop𝑇) ∈ ℂ
47 mul32 10147 . . . . . . 7 (((normop𝑇) ∈ ℂ ∧ (norm‘(𝐹𝐴)) ∈ ℂ ∧ (norm𝐴) ∈ ℂ) → (((normop𝑇) · (norm‘(𝐹𝐴))) · (norm𝐴)) = (((normop𝑇) · (norm𝐴)) · (norm‘(𝐹𝐴))))
4846, 47mp3an1 1408 . . . . . 6 (((norm‘(𝐹𝐴)) ∈ ℂ ∧ (norm𝐴) ∈ ℂ) → (((normop𝑇) · (norm‘(𝐹𝐴))) · (norm𝐴)) = (((normop𝑇) · (norm𝐴)) · (norm‘(𝐹𝐴))))
4941, 45, 48syl2anc 692 . . . . 5 (𝐴 ∈ ℋ → (((normop𝑇) · (norm‘(𝐹𝐴))) · (norm𝐴)) = (((normop𝑇) · (norm𝐴)) · (norm‘(𝐹𝐴))))
5030, 44, 493brtr3d 4644 . . . 4 (𝐴 ∈ ℋ → ((norm‘(𝐹𝐴)) · (norm‘(𝐹𝐴))) ≤ (((normop𝑇) · (norm𝐴)) · (norm‘(𝐹𝐴))))
5150adantr 481 . . 3 ((𝐴 ∈ ℋ ∧ (norm‘(𝐹𝐴)) ≠ 0) → ((norm‘(𝐹𝐴)) · (norm‘(𝐹𝐴))) ≤ (((normop𝑇) · (norm𝐴)) · (norm‘(𝐹𝐴))))
5220adantr 481 . . . 4 ((𝐴 ∈ ℋ ∧ (norm‘(𝐹𝐴)) ≠ 0) → (norm‘(𝐹𝐴)) ∈ ℝ)
53 remulcl 9965 . . . . . 6 (((normop𝑇) ∈ ℝ ∧ (norm𝐴) ∈ ℝ) → ((normop𝑇) · (norm𝐴)) ∈ ℝ)
5418, 16, 53sylancr 694 . . . . 5 (𝐴 ∈ ℋ → ((normop𝑇) · (norm𝐴)) ∈ ℝ)
5554adantr 481 . . . 4 ((𝐴 ∈ ℋ ∧ (norm‘(𝐹𝐴)) ≠ 0) → ((normop𝑇) · (norm𝐴)) ∈ ℝ)
56 normge0 27832 . . . . . . 7 ((𝐹𝐴) ∈ ℋ → 0 ≤ (norm‘(𝐹𝐴)))
57 0re 9984 . . . . . . . 8 0 ∈ ℝ
58 leltne 10071 . . . . . . . 8 ((0 ∈ ℝ ∧ (norm‘(𝐹𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝐹𝐴))) → (0 < (norm‘(𝐹𝐴)) ↔ (norm‘(𝐹𝐴)) ≠ 0))
5957, 58mp3an1 1408 . . . . . . 7 (((norm‘(𝐹𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝐹𝐴))) → (0 < (norm‘(𝐹𝐴)) ↔ (norm‘(𝐹𝐴)) ≠ 0))
6019, 56, 59syl2anc 692 . . . . . 6 ((𝐹𝐴) ∈ ℋ → (0 < (norm‘(𝐹𝐴)) ↔ (norm‘(𝐹𝐴)) ≠ 0))
6160biimpar 502 . . . . 5 (((𝐹𝐴) ∈ ℋ ∧ (norm‘(𝐹𝐴)) ≠ 0) → 0 < (norm‘(𝐹𝐴)))
627, 61sylan 488 . . . 4 ((𝐴 ∈ ℋ ∧ (norm‘(𝐹𝐴)) ≠ 0) → 0 < (norm‘(𝐹𝐴)))
63 lemul1 10819 . . . 4 (((norm‘(𝐹𝐴)) ∈ ℝ ∧ ((normop𝑇) · (norm𝐴)) ∈ ℝ ∧ ((norm‘(𝐹𝐴)) ∈ ℝ ∧ 0 < (norm‘(𝐹𝐴)))) → ((norm‘(𝐹𝐴)) ≤ ((normop𝑇) · (norm𝐴)) ↔ ((norm‘(𝐹𝐴)) · (norm‘(𝐹𝐴))) ≤ (((normop𝑇) · (norm𝐴)) · (norm‘(𝐹𝐴)))))
6452, 55, 52, 62, 63syl112anc 1327 . . 3 ((𝐴 ∈ ℋ ∧ (norm‘(𝐹𝐴)) ≠ 0) → ((norm‘(𝐹𝐴)) ≤ ((normop𝑇) · (norm𝐴)) ↔ ((norm‘(𝐹𝐴)) · (norm‘(𝐹𝐴))) ≤ (((normop𝑇) · (norm𝐴)) · (norm‘(𝐹𝐴)))))
6551, 64mpbird 247 . 2 ((𝐴 ∈ ℋ ∧ (norm‘(𝐹𝐴)) ≠ 0) → (norm‘(𝐹𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
66 nmopge0 28619 . . . . 5 (𝑇: ℋ⟶ ℋ → 0 ≤ (normop𝑇))
678, 66ax-mp 5 . . . 4 0 ≤ (normop𝑇)
68 mulge0 10490 . . . 4 ((((normop𝑇) ∈ ℝ ∧ 0 ≤ (normop𝑇)) ∧ ((norm𝐴) ∈ ℝ ∧ 0 ≤ (norm𝐴))) → 0 ≤ ((normop𝑇) · (norm𝐴)))
6918, 67, 68mpanl12 717 . . 3 (((norm𝐴) ∈ ℝ ∧ 0 ≤ (norm𝐴)) → 0 ≤ ((normop𝑇) · (norm𝐴)))
7016, 26, 69syl2anc 692 . 2 (𝐴 ∈ ℋ → 0 ≤ ((normop𝑇) · (norm𝐴)))
711, 65, 70pm2.61ne 2875 1 (𝐴 ∈ ℋ → (norm‘(𝐹𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907   class class class wbr 4613   ↦ cmpt 4673  ⟶wf 5843  ‘cfv 5847  ℩crio 6564  (class class class)co 6604  ℂcc 9878  ℝcr 9879  0cc0 9880   · cmul 9885   < clt 10018   ≤ cle 10019  2c2 11014  ↑cexp 12800  abscabs 13908   ℋchil 27625   ·ih csp 27628  normℎcno 27629  normopcnop 27651  ContOpccop 27652  LinOpclo 27653 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cc 9201  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960  ax-hilex 27705  ax-hfvadd 27706  ax-hvcom 27707  ax-hvass 27708  ax-hv0cl 27709  ax-hvaddid 27710  ax-hfvmul 27711  ax-hvmulid 27712  ax-hvmulass 27713  ax-hvdistr1 27714  ax-hvdistr2 27715  ax-hvmul0 27716  ax-hfi 27785  ax-his1 27788  ax-his2 27789  ax-his3 27790  ax-his4 27791  ax-hcompl 27908 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-acn 8712  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154  df-sum 14351  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-cn 20941  df-cnp 20942  df-lm 20943  df-t1 21028  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cfil 22961  df-cau 22962  df-cmet 22963  df-grpo 27196  df-gid 27197  df-ginv 27198  df-gdiv 27199  df-ablo 27248  df-vc 27263  df-nv 27296  df-va 27299  df-ba 27300  df-sm 27301  df-0v 27302  df-vs 27303  df-nmcv 27304  df-ims 27305  df-dip 27405  df-ssp 27426  df-ph 27517  df-cbn 27568  df-hnorm 27674  df-hba 27675  df-hvsub 27677  df-hlim 27678  df-hcau 27679  df-sh 27913  df-ch 27927  df-oc 27958  df-ch0 27959  df-nmop 28547  df-cnop 28548  df-lnop 28549  df-nmfn 28553  df-nlfn 28554  df-cnfn 28555  df-lnfn 28556 This theorem is referenced by:  cnlnadjlem8  28782  nmopadjlei  28796
 Copyright terms: Public domain W3C validator