HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem9 Structured version   Visualization version   GIF version

Theorem cnlnadjlem9 28822
Description: Lemma for cnlnadji 28823. 𝐹 provides an example showing the existence of a continuous linear adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
cnlnadjlem.4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
cnlnadjlem.5 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
Assertion
Ref Expression
cnlnadjlem9 𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))
Distinct variable groups:   𝑣,𝑔,𝑤,𝑦,𝑧   𝑧,𝐵   𝑤,𝑡,𝑥,𝑧,𝐹   𝑡,𝑔,𝑥,𝑇,𝑣,𝑦,𝑤,𝑧   𝑣,𝐺,𝑤,𝑥,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑤,𝑣,𝑡,𝑔)   𝐹(𝑦,𝑣,𝑔)   𝐺(𝑦,𝑡,𝑔)

Proof of Theorem cnlnadjlem9
StepHypRef Expression
1 cnlnadjlem.1 . . . 4 𝑇 ∈ LinOp
2 cnlnadjlem.2 . . . 4 𝑇 ∈ ContOp
3 cnlnadjlem.3 . . . 4 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
4 cnlnadjlem.4 . . . 4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
5 cnlnadjlem.5 . . . 4 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
61, 2, 3, 4, 5cnlnadjlem6 28819 . . 3 𝐹 ∈ LinOp
71, 2, 3, 4, 5cnlnadjlem8 28821 . . 3 𝐹 ∈ ContOp
8 elin 3780 . . 3 (𝐹 ∈ (LinOp ∩ ContOp) ↔ (𝐹 ∈ LinOp ∧ 𝐹 ∈ ContOp))
96, 7, 8mpbir2an 954 . 2 𝐹 ∈ (LinOp ∩ ContOp)
101, 2, 3, 4, 5cnlnadjlem5 28818 . . . 4 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝐹𝑧)))
1110ancoms 469 . . 3 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝐹𝑧)))
1211rgen2a 2973 . 2 𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝐹𝑧))
13 fveq1 6157 . . . . . 6 (𝑡 = 𝐹 → (𝑡𝑧) = (𝐹𝑧))
1413oveq2d 6631 . . . . 5 (𝑡 = 𝐹 → (𝑥 ·ih (𝑡𝑧)) = (𝑥 ·ih (𝐹𝑧)))
1514eqeq2d 2631 . . . 4 (𝑡 = 𝐹 → (((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) ↔ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝐹𝑧))))
16152ralbidv 2985 . . 3 (𝑡 = 𝐹 → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝐹𝑧))))
1716rspcev 3299 . 2 ((𝐹 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝐹𝑧))) → ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)))
189, 12, 17mp2an 707 1 𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  wral 2908  wrex 2909  cin 3559  cmpt 4683  cfv 5857  crio 6575  (class class class)co 6615  chil 27664   ·ih csp 27667  ContOpccop 27691  LinOpclo 27692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cc 9217  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976  ax-hilex 27744  ax-hfvadd 27745  ax-hvcom 27746  ax-hvass 27747  ax-hv0cl 27748  ax-hvaddid 27749  ax-hfvmul 27750  ax-hvmulid 27751  ax-hvmulass 27752  ax-hvdistr1 27753  ax-hvdistr2 27754  ax-hvmul0 27755  ax-hfi 27824  ax-his1 27827  ax-his2 27828  ax-his3 27829  ax-his4 27830  ax-hcompl 27947
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-omul 7525  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-acn 8728  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-rlim 14170  df-sum 14367  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-pt 16045  df-prds 16048  df-xrs 16102  df-qtop 16107  df-imas 16108  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-cn 20971  df-cnp 20972  df-lm 20973  df-t1 21058  df-haus 21059  df-tx 21305  df-hmeo 21498  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-xms 22065  df-ms 22066  df-tms 22067  df-cfil 22993  df-cau 22994  df-cmet 22995  df-grpo 27235  df-gid 27236  df-ginv 27237  df-gdiv 27238  df-ablo 27287  df-vc 27302  df-nv 27335  df-va 27338  df-ba 27339  df-sm 27340  df-0v 27341  df-vs 27342  df-nmcv 27343  df-ims 27344  df-dip 27444  df-ssp 27465  df-ph 27556  df-cbn 27607  df-hnorm 27713  df-hba 27714  df-hvsub 27716  df-hlim 27717  df-hcau 27718  df-sh 27952  df-ch 27966  df-oc 27997  df-ch0 27998  df-nmop 28586  df-cnop 28587  df-lnop 28588  df-unop 28590  df-nmfn 28592  df-nlfn 28593  df-cnfn 28594  df-lnfn 28595
This theorem is referenced by:  cnlnadji  28823
  Copyright terms: Public domain W3C validator