Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnssadj Structured version   Visualization version   GIF version

 Description: Every continuous linear Hilbert space operator has an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression

Dummy variables 𝑢 𝑡 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadj 28808 . . . . 5 (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)))
2 df-rex 2913 . . . . 5 (∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) ↔ ∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))))
31, 2sylib 208 . . . 4 (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))))
4 inss1 3816 . . . . . . . . . 10 (LinOp ∩ ContOp) ⊆ LinOp
54sseli 3583 . . . . . . . . 9 (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦 ∈ LinOp)
6 lnopf 28588 . . . . . . . . 9 (𝑦 ∈ LinOp → 𝑦: ℋ⟶ ℋ)
75, 6syl 17 . . . . . . . 8 (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦: ℋ⟶ ℋ)
87a1d 25 . . . . . . 7 (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))) → 𝑦: ℋ⟶ ℋ))
94sseli 3583 . . . . . . . . . 10 (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡 ∈ LinOp)
10 lnopf 28588 . . . . . . . . . 10 (𝑡 ∈ LinOp → 𝑡: ℋ⟶ ℋ)
119, 10syl 17 . . . . . . . . 9 (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡: ℋ⟶ ℋ)
1211a1i 11 . . . . . . . 8 (𝑦 ∈ (LinOp ∩ ContOp) → (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡: ℋ⟶ ℋ))
1312adantrd 484 . . . . . . 7 (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))) → 𝑡: ℋ⟶ ℋ))
14 eqcom 2628 . . . . . . . . . . 11 (((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) ↔ (𝑥 ·ih (𝑡𝑧)) = ((𝑦𝑥) ·ih 𝑧))
1514biimpi 206 . . . . . . . . . 10 (((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) → (𝑥 ·ih (𝑡𝑧)) = ((𝑦𝑥) ·ih 𝑧))
16152ralimi 2948 . . . . . . . . 9 (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡𝑧)) = ((𝑦𝑥) ·ih 𝑧))
17 adjsym 28562 . . . . . . . . . 10 ((𝑡: ℋ⟶ ℋ ∧ 𝑦: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡𝑧)) = ((𝑦𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
1811, 7, 17syl2anr 495 . . . . . . . . 9 ((𝑦 ∈ (LinOp ∩ ContOp) ∧ 𝑡 ∈ (LinOp ∩ ContOp)) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑡𝑧)) = ((𝑦𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
1916, 18syl5ib 234 . . . . . . . 8 ((𝑦 ∈ (LinOp ∩ ContOp) ∧ 𝑡 ∈ (LinOp ∩ ContOp)) → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
2019expimpd 628 . . . . . . 7 (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
218, 13, 203jcad 1241 . . . . . 6 (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))) → (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧))))
22 dfadj2 28614 . . . . . . . 8 adj = {⟨𝑢, 𝑣⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢𝑧)) = ((𝑣𝑥) ·ih 𝑧))}
2322eleq2i 2690 . . . . . . 7 (⟨𝑦, 𝑡⟩ ∈ adj ↔ ⟨𝑦, 𝑡⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢𝑧)) = ((𝑣𝑥) ·ih 𝑧))})
24 vex 3192 . . . . . . . 8 𝑦 ∈ V
25 vex 3192 . . . . . . . 8 𝑡 ∈ V
26 feq1 5988 . . . . . . . . 9 (𝑢 = 𝑦 → (𝑢: ℋ⟶ ℋ ↔ 𝑦: ℋ⟶ ℋ))
27 fveq1 6152 . . . . . . . . . . . 12 (𝑢 = 𝑦 → (𝑢𝑧) = (𝑦𝑧))
2827oveq2d 6626 . . . . . . . . . . 11 (𝑢 = 𝑦 → (𝑥 ·ih (𝑢𝑧)) = (𝑥 ·ih (𝑦𝑧)))
2928eqeq1d 2623 . . . . . . . . . 10 (𝑢 = 𝑦 → ((𝑥 ·ih (𝑢𝑧)) = ((𝑣𝑥) ·ih 𝑧) ↔ (𝑥 ·ih (𝑦𝑧)) = ((𝑣𝑥) ·ih 𝑧)))
30292ralbidv 2984 . . . . . . . . 9 (𝑢 = 𝑦 → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢𝑧)) = ((𝑣𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑣𝑥) ·ih 𝑧)))
3126, 303anbi13d 1398 . . . . . . . 8 (𝑢 = 𝑦 → ((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢𝑧)) = ((𝑣𝑥) ·ih 𝑧)) ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑣𝑥) ·ih 𝑧))))
32 feq1 5988 . . . . . . . . 9 (𝑣 = 𝑡 → (𝑣: ℋ⟶ ℋ ↔ 𝑡: ℋ⟶ ℋ))
33 fveq1 6152 . . . . . . . . . . . 12 (𝑣 = 𝑡 → (𝑣𝑥) = (𝑡𝑥))
3433oveq1d 6625 . . . . . . . . . . 11 (𝑣 = 𝑡 → ((𝑣𝑥) ·ih 𝑧) = ((𝑡𝑥) ·ih 𝑧))
3534eqeq2d 2631 . . . . . . . . . 10 (𝑣 = 𝑡 → ((𝑥 ·ih (𝑦𝑧)) = ((𝑣𝑥) ·ih 𝑧) ↔ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
36352ralbidv 2984 . . . . . . . . 9 (𝑣 = 𝑡 → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑣𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
3732, 363anbi23d 1399 . . . . . . . 8 (𝑣 = 𝑡 → ((𝑦: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑣𝑥) ·ih 𝑧)) ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧))))
3824, 25, 31, 37opelopab 4962 . . . . . . 7 (⟨𝑦, 𝑡⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑢𝑧)) = ((𝑣𝑥) ·ih 𝑧))} ↔ (𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)))
3923, 38bitr2i 265 . . . . . 6 ((𝑦: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ (𝑥 ·ih (𝑦𝑧)) = ((𝑡𝑥) ·ih 𝑧)) ↔ ⟨𝑦, 𝑡⟩ ∈ adj)
4021, 39syl6ib 241 . . . . 5 (𝑦 ∈ (LinOp ∩ ContOp) → ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))) → ⟨𝑦, 𝑡⟩ ∈ adj))
4140eximdv 1843 . . . 4 (𝑦 ∈ (LinOp ∩ ContOp) → (∃𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑦𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))) → ∃𝑡𝑦, 𝑡⟩ ∈ adj))
423, 41mpd 15 . . 3 (𝑦 ∈ (LinOp ∩ ContOp) → ∃𝑡𝑦, 𝑡⟩ ∈ adj)
4324eldm2 5287 . . 3 (𝑦 ∈ dom adj ↔ ∃𝑡𝑦, 𝑡⟩ ∈ adj)
4442, 43sylibr 224 . 2 (𝑦 ∈ (LinOp ∩ ContOp) → 𝑦 ∈ dom adj)
4544ssriv 3591 1 (LinOp ∩ ContOp) ⊆ dom adj