Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt12 Structured version   Visualization version   GIF version

Theorem cnmpt12 21451
 Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
cnmpt12.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt12.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt12.c (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
cnmpt12.d ((𝑦 = 𝐴𝑧 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
cnmpt12 (𝜑 → (𝑥𝑋𝐷) ∈ (𝐽 Cn 𝑀))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑦,𝐷,𝑧   𝑥,𝑦   𝜑,𝑥   𝑥,𝐽,𝑦   𝑥,𝑧,𝑀,𝑦   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦,𝑧)   𝐷(𝑥)   𝐽(𝑧)   𝐾(𝑧)   𝐿(𝑧)

Proof of Theorem cnmpt12
StepHypRef Expression
1 cnmptid.j . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt12.k . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cnmpt11.a . . . . . . 7 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
4 cnf2 21034 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋𝑌)
51, 2, 3, 4syl3anc 1324 . . . . . 6 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
6 eqid 2620 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
76fmpt 6367 . . . . . 6 (∀𝑥𝑋 𝐴𝑌 ↔ (𝑥𝑋𝐴):𝑋𝑌)
85, 7sylibr 224 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐴𝑌)
98r19.21bi 2929 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
10 cnmpt12.l . . . . . . 7 (𝜑𝐿 ∈ (TopOn‘𝑍))
11 cnmpt1t.b . . . . . . 7 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
12 cnf2 21034 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥𝑋𝐵):𝑋𝑍)
131, 10, 11, 12syl3anc 1324 . . . . . 6 (𝜑 → (𝑥𝑋𝐵):𝑋𝑍)
14 eqid 2620 . . . . . . 7 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
1514fmpt 6367 . . . . . 6 (∀𝑥𝑋 𝐵𝑍 ↔ (𝑥𝑋𝐵):𝑋𝑍)
1613, 15sylibr 224 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐵𝑍)
1716r19.21bi 2929 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑍)
189, 17jca 554 . . . . 5 ((𝜑𝑥𝑋) → (𝐴𝑌𝐵𝑍))
19 txtopon 21375 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
202, 10, 19syl2anc 692 . . . . . . . . 9 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
21 cnmpt12.c . . . . . . . . . . 11 (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
22 cntop2 21026 . . . . . . . . . . 11 ((𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀) → 𝑀 ∈ Top)
2321, 22syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ Top)
24 eqid 2620 . . . . . . . . . . 11 𝑀 = 𝑀
2524toptopon 20703 . . . . . . . . . 10 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘ 𝑀))
2623, 25sylib 208 . . . . . . . . 9 (𝜑𝑀 ∈ (TopOn‘ 𝑀))
27 cnf2 21034 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)) ∧ 𝑀 ∈ (TopOn‘ 𝑀) ∧ (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) → (𝑦𝑌, 𝑧𝑍𝐶):(𝑌 × 𝑍)⟶ 𝑀)
2820, 26, 21, 27syl3anc 1324 . . . . . . . 8 (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶):(𝑌 × 𝑍)⟶ 𝑀)
29 eqid 2620 . . . . . . . . 9 (𝑦𝑌, 𝑧𝑍𝐶) = (𝑦𝑌, 𝑧𝑍𝐶)
3029fmpt2 7222 . . . . . . . 8 (∀𝑦𝑌𝑧𝑍 𝐶 𝑀 ↔ (𝑦𝑌, 𝑧𝑍𝐶):(𝑌 × 𝑍)⟶ 𝑀)
3128, 30sylibr 224 . . . . . . 7 (𝜑 → ∀𝑦𝑌𝑧𝑍 𝐶 𝑀)
32 r2al 2936 . . . . . . 7 (∀𝑦𝑌𝑧𝑍 𝐶 𝑀 ↔ ∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀))
3331, 32sylib 208 . . . . . 6 (𝜑 → ∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀))
3433adantr 481 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀))
35 eleq1 2687 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑌𝐴𝑌))
36 eleq1 2687 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑍𝐵𝑍))
3735, 36bi2anan9 916 . . . . . . 7 ((𝑦 = 𝐴𝑧 = 𝐵) → ((𝑦𝑌𝑧𝑍) ↔ (𝐴𝑌𝐵𝑍)))
38 cnmpt12.d . . . . . . . 8 ((𝑦 = 𝐴𝑧 = 𝐵) → 𝐶 = 𝐷)
3938eleq1d 2684 . . . . . . 7 ((𝑦 = 𝐴𝑧 = 𝐵) → (𝐶 𝑀𝐷 𝑀))
4037, 39imbi12d 334 . . . . . 6 ((𝑦 = 𝐴𝑧 = 𝐵) → (((𝑦𝑌𝑧𝑍) → 𝐶 𝑀) ↔ ((𝐴𝑌𝐵𝑍) → 𝐷 𝑀)))
4140spc2gv 3291 . . . . 5 ((𝐴𝑌𝐵𝑍) → (∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀) → ((𝐴𝑌𝐵𝑍) → 𝐷 𝑀)))
4218, 34, 18, 41syl3c 66 . . . 4 ((𝜑𝑥𝑋) → 𝐷 𝑀)
4338, 29ovmpt2ga 6775 . . . 4 ((𝐴𝑌𝐵𝑍𝐷 𝑀) → (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵) = 𝐷)
449, 17, 42, 43syl3anc 1324 . . 3 ((𝜑𝑥𝑋) → (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵) = 𝐷)
4544mpteq2dva 4735 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵)) = (𝑥𝑋𝐷))
461, 3, 11, 21cnmpt12f 21450 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵)) ∈ (𝐽 Cn 𝑀))
4745, 46eqeltrrd 2700 1 (𝜑 → (𝑥𝑋𝐷) ∈ (𝐽 Cn 𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384  ∀wal 1479   = wceq 1481   ∈ wcel 1988  ∀wral 2909  ∪ cuni 4427   ↦ cmpt 4720   × cxp 5102  ⟶wf 5872  ‘cfv 5876  (class class class)co 6635   ↦ cmpt2 6637  Topctop 20679  TopOnctopon 20696   Cn ccn 21009   ×t ctx 21344 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-map 7844  df-topgen 16085  df-top 20680  df-topon 20697  df-bases 20731  df-cn 21012  df-tx 21346 This theorem is referenced by:  cnmptkk  21467  cnmptk1p  21469  pcocn  22798  pcopt  22803  pcopt2  22804  pcoass  22805  resqrtcn  24471  sqrtcn  24472  rmulccn  29948  pl1cn  29975  cxpcncf1  30647  cxpcncf2  39876
 Copyright terms: Public domain W3C validator