MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt12f Structured version   Visualization version   GIF version

Theorem cnmpt12f 22276
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
cnmpt12f.f (𝜑𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
Assertion
Ref Expression
cnmpt12f (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑋   𝑥,𝐾   𝑥,𝐿
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cnmpt12f
StepHypRef Expression
1 df-ov 7161 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
21mpteq2i 5160 . 2 (𝑥𝑋 ↦ (𝐴𝐹𝐵)) = (𝑥𝑋 ↦ (𝐹‘⟨𝐴, 𝐵⟩))
3 cnmptid.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 cnmpt11.a . . . 4 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
5 cnmpt1t.b . . . 4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
63, 4, 5cnmpt1t 22275 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
7 cnmpt12f.f . . 3 (𝜑𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
83, 6, 7cnmpt11f 22274 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐹‘⟨𝐴, 𝐵⟩)) ∈ (𝐽 Cn 𝑀))
92, 8eqeltrid 2919 1 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  cop 4575  cmpt 5148  cfv 6357  (class class class)co 7158  TopOnctopon 21520   Cn ccn 21834   ×t ctx 22170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-map 8410  df-topgen 16719  df-top 21504  df-topon 21521  df-bases 21556  df-cn 21837  df-tx 22172
This theorem is referenced by:  cnmpt12  22277  cnmpt1plusg  22697  istgp2  22701  clsnsg  22720  tgpt0  22729  cnmpt1vsca  22804  cnmpt1ds  23452  fsumcn  23480  expcn  23482  divccn  23483  cncfmpt2f  23524  cdivcncf  23527  iirevcn  23536  iihalf1cn  23538  iihalf2cn  23540  icchmeo  23547  evth  23565  evth2  23566  pcoass  23630  cnmpt1ip  23852  dvcnvlem  24575  plycn  24853  psercn2  25013  atansopn  25512  efrlim  25549  ipasslem7  28615  occllem  29082  hmopidmchi  29930  cvxpconn  32491  cvmlift2lem2  32553  cvmlift2lem3  32554  cvmliftphtlem  32566  sinccvglem  32917  knoppcnlem10  33843  broucube  34928  areacirclem2  34985  fprodcnlem  41887
  Copyright terms: Public domain W3C validator