MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1ip Structured version   Visualization version   GIF version

Theorem cnmpt1ip 23246
Description: Continuity of inner product; analogue of cnmpt12f 21671 which cannot be used directly because ·𝑖 is not a function. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cnmpt1ip.j 𝐽 = (TopOpen‘𝑊)
cnmpt1ip.c 𝐶 = (TopOpen‘ℂfld)
cnmpt1ip.h , = (·𝑖𝑊)
cnmpt1ip.r (𝜑𝑊 ∈ ℂPreHil)
cnmpt1ip.k (𝜑𝐾 ∈ (TopOn‘𝑋))
cnmpt1ip.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐾 Cn 𝐽))
cnmpt1ip.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐾 Cn 𝐽))
Assertion
Ref Expression
cnmpt1ip (𝜑 → (𝑥𝑋 ↦ (𝐴 , 𝐵)) ∈ (𝐾 Cn 𝐶))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   , (𝑥)

Proof of Theorem cnmpt1ip
StepHypRef Expression
1 cnmpt1ip.k . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘𝑋))
2 cnmpt1ip.r . . . . . . . . 9 (𝜑𝑊 ∈ ℂPreHil)
3 cphngp 23173 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
4 ngptps 22607 . . . . . . . . 9 (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp)
52, 3, 43syl 18 . . . . . . . 8 (𝜑𝑊 ∈ TopSp)
6 eqid 2760 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
7 cnmpt1ip.j . . . . . . . . 9 𝐽 = (TopOpen‘𝑊)
86, 7istps 20940 . . . . . . . 8 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊)))
95, 8sylib 208 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑊)))
10 cnmpt1ip.a . . . . . . 7 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐾 Cn 𝐽))
11 cnf2 21255 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥𝑋𝐴) ∈ (𝐾 Cn 𝐽)) → (𝑥𝑋𝐴):𝑋⟶(Base‘𝑊))
121, 9, 10, 11syl3anc 1477 . . . . . 6 (𝜑 → (𝑥𝑋𝐴):𝑋⟶(Base‘𝑊))
13 eqid 2760 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
1413fmpt 6544 . . . . . 6 (∀𝑥𝑋 𝐴 ∈ (Base‘𝑊) ↔ (𝑥𝑋𝐴):𝑋⟶(Base‘𝑊))
1512, 14sylibr 224 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐴 ∈ (Base‘𝑊))
1615r19.21bi 3070 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ (Base‘𝑊))
17 cnmpt1ip.b . . . . . . 7 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐾 Cn 𝐽))
18 cnf2 21255 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥𝑋𝐵) ∈ (𝐾 Cn 𝐽)) → (𝑥𝑋𝐵):𝑋⟶(Base‘𝑊))
191, 9, 17, 18syl3anc 1477 . . . . . 6 (𝜑 → (𝑥𝑋𝐵):𝑋⟶(Base‘𝑊))
20 eqid 2760 . . . . . . 7 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2120fmpt 6544 . . . . . 6 (∀𝑥𝑋 𝐵 ∈ (Base‘𝑊) ↔ (𝑥𝑋𝐵):𝑋⟶(Base‘𝑊))
2219, 21sylibr 224 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐵 ∈ (Base‘𝑊))
2322r19.21bi 3070 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ (Base‘𝑊))
24 cnmpt1ip.h . . . . 5 , = (·𝑖𝑊)
25 eqid 2760 . . . . 5 (·if𝑊) = (·if𝑊)
266, 24, 25ipfval 20196 . . . 4 ((𝐴 ∈ (Base‘𝑊) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴(·if𝑊)𝐵) = (𝐴 , 𝐵))
2716, 23, 26syl2anc 696 . . 3 ((𝜑𝑥𝑋) → (𝐴(·if𝑊)𝐵) = (𝐴 , 𝐵))
2827mpteq2dva 4896 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(·if𝑊)𝐵)) = (𝑥𝑋 ↦ (𝐴 , 𝐵)))
29 cnmpt1ip.c . . . . 5 𝐶 = (TopOpen‘ℂfld)
3025, 7, 29ipcn 23245 . . . 4 (𝑊 ∈ ℂPreHil → (·if𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶))
312, 30syl 17 . . 3 (𝜑 → (·if𝑊) ∈ ((𝐽 ×t 𝐽) Cn 𝐶))
321, 10, 17, 31cnmpt12f 21671 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(·if𝑊)𝐵)) ∈ (𝐾 Cn 𝐶))
3328, 32eqeltrrd 2840 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 , 𝐵)) ∈ (𝐾 Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  cmpt 4881  wf 6045  cfv 6049  (class class class)co 6813  Basecbs 16059  ·𝑖cip 16148  TopOpenctopn 16284  fldccnfld 19948  ·ifcipf 20172  TopOnctopon 20917  TopSpctps 20938   Cn ccn 21230   ×t ctx 21565  NrmGrpcngp 22583  ℂPreHilccph 23166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-ghm 17859  df-cntz 17950  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-rnghom 18917  df-drng 18951  df-subrg 18980  df-staf 19047  df-srng 19048  df-lmod 19067  df-lmhm 19224  df-lvec 19305  df-sra 19374  df-rgmod 19375  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-cnfld 19949  df-phl 20173  df-ipf 20174  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cn 21233  df-cnp 21234  df-tx 21567  df-hmeo 21760  df-xms 22326  df-ms 22327  df-tms 22328  df-nm 22588  df-ngp 22589  df-tng 22590  df-nlm 22592  df-clm 23063  df-cph 23168  df-tch 23169
This theorem is referenced by:  csscld  23248  clsocv  23249
  Copyright terms: Public domain W3C validator