MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptre Structured version   Visualization version   GIF version

Theorem cnmptre 23525
Description: Lemma for iirevcn 23528 and related functions. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmptre.1 𝑅 = (TopOpen‘ℂfld)
cnmptre.2 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
cnmptre.3 𝐾 = ((topGen‘ran (,)) ↾t 𝐵)
cnmptre.4 (𝜑𝐴 ⊆ ℝ)
cnmptre.5 (𝜑𝐵 ⊆ ℝ)
cnmptre.6 ((𝜑𝑥𝐴) → 𝐹𝐵)
cnmptre.7 (𝜑 → (𝑥 ∈ ℂ ↦ 𝐹) ∈ (𝑅 Cn 𝑅))
Assertion
Ref Expression
cnmptre (𝜑 → (𝑥𝐴𝐹) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem cnmptre
StepHypRef Expression
1 eqid 2821 . . . . 5 (𝑅t 𝐴) = (𝑅t 𝐴)
2 cnmptre.1 . . . . . . 7 𝑅 = (TopOpen‘ℂfld)
32cnfldtopon 23385 . . . . . 6 𝑅 ∈ (TopOn‘ℂ)
43a1i 11 . . . . 5 (𝜑𝑅 ∈ (TopOn‘ℂ))
5 cnmptre.4 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
6 ax-resscn 10588 . . . . . 6 ℝ ⊆ ℂ
75, 6sstrdi 3978 . . . . 5 (𝜑𝐴 ⊆ ℂ)
8 cnmptre.7 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ 𝐹) ∈ (𝑅 Cn 𝑅))
91, 4, 7, 8cnmpt1res 22278 . . . 4 (𝜑 → (𝑥𝐴𝐹) ∈ ((𝑅t 𝐴) Cn 𝑅))
10 eqid 2821 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
112, 10rerest 23406 . . . . . . 7 (𝐴 ⊆ ℝ → (𝑅t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴))
125, 11syl 17 . . . . . 6 (𝜑 → (𝑅t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴))
13 cnmptre.2 . . . . . 6 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
1412, 13syl6eqr 2874 . . . . 5 (𝜑 → (𝑅t 𝐴) = 𝐽)
1514oveq1d 7165 . . . 4 (𝜑 → ((𝑅t 𝐴) Cn 𝑅) = (𝐽 Cn 𝑅))
169, 15eleqtrd 2915 . . 3 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐽 Cn 𝑅))
17 cnmptre.6 . . . . . 6 ((𝜑𝑥𝐴) → 𝐹𝐵)
1817fmpttd 6873 . . . . 5 (𝜑 → (𝑥𝐴𝐹):𝐴𝐵)
1918frnd 6515 . . . 4 (𝜑 → ran (𝑥𝐴𝐹) ⊆ 𝐵)
20 cnmptre.5 . . . . 5 (𝜑𝐵 ⊆ ℝ)
2120, 6sstrdi 3978 . . . 4 (𝜑𝐵 ⊆ ℂ)
22 cnrest2 21888 . . . 4 ((𝑅 ∈ (TopOn‘ℂ) ∧ ran (𝑥𝐴𝐹) ⊆ 𝐵𝐵 ⊆ ℂ) → ((𝑥𝐴𝐹) ∈ (𝐽 Cn 𝑅) ↔ (𝑥𝐴𝐹) ∈ (𝐽 Cn (𝑅t 𝐵))))
233, 19, 21, 22mp3an2i 1462 . . 3 (𝜑 → ((𝑥𝐴𝐹) ∈ (𝐽 Cn 𝑅) ↔ (𝑥𝐴𝐹) ∈ (𝐽 Cn (𝑅t 𝐵))))
2416, 23mpbid 234 . 2 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐽 Cn (𝑅t 𝐵)))
252, 10rerest 23406 . . . . 5 (𝐵 ⊆ ℝ → (𝑅t 𝐵) = ((topGen‘ran (,)) ↾t 𝐵))
2620, 25syl 17 . . . 4 (𝜑 → (𝑅t 𝐵) = ((topGen‘ran (,)) ↾t 𝐵))
27 cnmptre.3 . . . 4 𝐾 = ((topGen‘ran (,)) ↾t 𝐵)
2826, 27syl6eqr 2874 . . 3 (𝜑 → (𝑅t 𝐵) = 𝐾)
2928oveq2d 7166 . 2 (𝜑 → (𝐽 Cn (𝑅t 𝐵)) = (𝐽 Cn 𝐾))
3024, 29eleqtrd 2915 1 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wss 3935  cmpt 5138  ran crn 5550  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  (,)cioo 12732  t crest 16688  TopOpenctopn 16689  topGenctg 16705  fldccnfld 20539  TopOnctopon 21512   Cn ccn 21826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cn 21829  df-xms 22924  df-ms 22925
This theorem is referenced by:  iirevcn  23528  iihalf1cn  23530  iihalf2cn  23532  pcoass  23622
  Copyright terms: Public domain W3C validator