MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpf2 Structured version   Visualization version   GIF version

Theorem cnpf2 20994
Description: A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnpf2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)

Proof of Theorem cnpf2
StepHypRef Expression
1 eqid 2621 . . . 4 𝐽 = 𝐽
2 eqid 2621 . . . 4 𝐾 = 𝐾
31, 2cnpf 20991 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹: 𝐽 𝐾)
4 toponuni 20659 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
54feq2d 5998 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋𝑌𝐹: 𝐽𝑌))
6 toponuni 20659 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
76feq3d 5999 . . . 4 (𝐾 ∈ (TopOn‘𝑌) → (𝐹: 𝐽𝑌𝐹: 𝐽 𝐾))
85, 7sylan9bb 735 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹:𝑋𝑌𝐹: 𝐽 𝐾))
93, 8syl5ibr 236 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋𝑌))
1093impia 1258 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036  wcel 1987   cuni 4409  wf 5853  cfv 5857  (class class class)co 6615  TopOnctopon 20655   CnP ccnp 20969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-map 7819  df-top 20639  df-topon 20656  df-cnp 20972
This theorem is referenced by:  iscnp4  21007  1stccnp  21205  txcnp  21363  ptcnplem  21364  ptcnp  21365  cnpflf2  21744  cnpflf  21745  flfcnp  21748  flfcnp2  21751  cnpfcf  21785  ghmcnp  21858  metcnpi3  22291  limcvallem  23575  cnplimc  23591  limccnp  23595  limccnp2  23596  ftc1lem3  23739
  Copyright terms: Public domain W3C validator