MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpfcf Structured version   Visualization version   GIF version

Theorem cnpfcf 22643
Description: A function 𝐹 is continuous at point 𝐴 iff 𝐹 respects cluster points there. (Contributed by Jeff Hankins, 14-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpfcf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑓,𝐽   𝑓,𝐾   𝑓,𝑋   𝑓,𝑌

Proof of Theorem cnpfcf
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnpf2 21852 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
213expa 1114 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
323adantl3 1164 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
4 topontop 21515 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
5 cnpfcfi 22642 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝑓) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))
653com23 1122 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝐴 ∈ (𝐽 fClus 𝑓)) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))
763expia 1117 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
84, 7sylan 582 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
98ralrimivw 3183 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
1093ad2antl2 1182 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
113, 10jca 514 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
1211ex 415 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))))
13 simplrl 775 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → 𝑔 ∈ (Fil‘𝑋))
14 filfbas 22450 . . . . . . . . . . . . . 14 (𝑔 ∈ (Fil‘𝑋) → 𝑔 ∈ (fBas‘𝑋))
1513, 14syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → 𝑔 ∈ (fBas‘𝑋))
16 simprl 769 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → ∈ (Fil‘𝑌))
17 simpllr 774 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → 𝐹:𝑋𝑌)
18 simprr 771 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )
1915, 16, 17, 18fmfnfm 22560 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → ∃𝑓 ∈ (Fil‘𝑋)(𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))
20 r19.29 3254 . . . . . . . . . . . . 13 ((∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ ∃𝑓 ∈ (Fil‘𝑋)(𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓))) → ∃𝑓 ∈ (Fil‘𝑋)((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓))))
21 flimfcls 22628 . . . . . . . . . . . . . . . . . 18 (𝐽 fLim 𝑓) ⊆ (𝐽 fClus 𝑓)
22 simpll1 1208 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝐽 ∈ (TopOn‘𝑋))
2322ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐽 ∈ (TopOn‘𝑋))
24 simprl 769 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝑓 ∈ (Fil‘𝑋))
25 simprrl 779 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝑔𝑓)
26 flimss2 22574 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝑔𝑓) → (𝐽 fLim 𝑔) ⊆ (𝐽 fLim 𝑓))
2723, 24, 25, 26syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → (𝐽 fLim 𝑔) ⊆ (𝐽 fLim 𝑓))
28 simprr 771 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝐴 ∈ (𝐽 fLim 𝑔))
2928ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐴 ∈ (𝐽 fLim 𝑔))
3027, 29sseldd 3967 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐴 ∈ (𝐽 fLim 𝑓))
3121, 30sseldi 3964 . . . . . . . . . . . . . . . . 17 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐴 ∈ (𝐽 fClus 𝑓))
32 simpll2 1209 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝐾 ∈ (TopOn‘𝑌))
3332ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐾 ∈ (TopOn‘𝑌))
34 simplr 767 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝐹:𝑋𝑌)
3534ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → 𝐹:𝑋𝑌)
36 fcfval 22635 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐾 fClusf 𝑓)‘𝐹) = (𝐾 fClus ((𝑌 FilMap 𝐹)‘𝑓)))
3733, 24, 35, 36syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐾 fClusf 𝑓)‘𝐹) = (𝐾 fClus ((𝑌 FilMap 𝐹)‘𝑓)))
38 simprrr 780 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → = ((𝑌 FilMap 𝐹)‘𝑓))
3938oveq2d 7166 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → (𝐾 fClus ) = (𝐾 fClus ((𝑌 FilMap 𝐹)‘𝑓)))
4037, 39eqtr4d 2859 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐾 fClusf 𝑓)‘𝐹) = (𝐾 fClus ))
4140eleq2d 2898 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹) ↔ (𝐹𝐴) ∈ (𝐾 fClus )))
4241biimpd 231 . . . . . . . . . . . . . . . . 17 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹) → (𝐹𝐴) ∈ (𝐾 fClus )))
4331, 42embantd 59 . . . . . . . . . . . . . . . 16 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)))) → ((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ (𝐾 fClus )))
4443expr 459 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ 𝑓 ∈ (Fil‘𝑋)) → ((𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓)) → ((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ (𝐾 fClus ))))
4544impcomd 414 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) ∧ 𝑓 ∈ (Fil‘𝑋)) → (((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓))) → (𝐹𝐴) ∈ (𝐾 fClus )))
4645rexlimdva 3284 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → (∃𝑓 ∈ (Fil‘𝑋)((𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ (𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓))) → (𝐹𝐴) ∈ (𝐾 fClus )))
4720, 46syl5 34 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → ((∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ∧ ∃𝑓 ∈ (Fil‘𝑋)(𝑔𝑓 = ((𝑌 FilMap 𝐹)‘𝑓))) → (𝐹𝐴) ∈ (𝐾 fClus )))
4819, 47mpan2d 692 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ( ∈ (Fil‘𝑌) ∧ ((𝑌 FilMap 𝐹)‘𝑔) ⊆ )) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ (𝐾 fClus )))
4948expr 459 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ∈ (Fil‘𝑌)) → (((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ (𝐾 fClus ))))
5049com23 86 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) ∧ ∈ (Fil‘𝑌)) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus ))))
5150ralrimdva 3189 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → ∀ ∈ (Fil‘𝑌)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus ))))
52 toponmax 21528 . . . . . . . . . . . . 13 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
5332, 52syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝑌𝐾)
54 simprl 769 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝑔 ∈ (Fil‘𝑋))
5554, 14syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝑔 ∈ (fBas‘𝑋))
56 fmfil 22546 . . . . . . . . . . . 12 ((𝑌𝐾𝑔 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑌 FilMap 𝐹)‘𝑔) ∈ (Fil‘𝑌))
5753, 55, 34, 56syl3anc 1367 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝑌 FilMap 𝐹)‘𝑔) ∈ (Fil‘𝑌))
58 toponuni 21516 . . . . . . . . . . . . 13 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
5932, 58syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → 𝑌 = 𝐾)
6059fveq2d 6668 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → (Fil‘𝑌) = (Fil‘ 𝐾))
6157, 60eleqtrd 2915 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝑌 FilMap 𝐹)‘𝑔) ∈ (Fil‘ 𝐾))
62 eqid 2821 . . . . . . . . . . 11 𝐾 = 𝐾
6362flimfnfcls 22630 . . . . . . . . . 10 (((𝑌 FilMap 𝐹)‘𝑔) ∈ (Fil‘ 𝐾) → ((𝐹𝐴) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔)) ↔ ∀ ∈ (Fil‘ 𝐾)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus ))))
6461, 63syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝐹𝐴) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔)) ↔ ∀ ∈ (Fil‘ 𝐾)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus ))))
65 flfval 22592 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑔 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐾 fLimf 𝑔)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔)))
6632, 54, 34, 65syl3anc 1367 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝐾 fLimf 𝑔)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔)))
6766eleq2d 2898 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹) ↔ (𝐹𝐴) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝑔))))
6860raleqdv 3415 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → (∀ ∈ (Fil‘𝑌)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus )) ↔ ∀ ∈ (Fil‘ 𝐾)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus ))))
6964, 67, 683bitr4d 313 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹) ↔ ∀ ∈ (Fil‘𝑌)(((𝑌 FilMap 𝐹)‘𝑔) ⊆ → (𝐹𝐴) ∈ (𝐾 fClus ))))
7051, 69sylibrd 261 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑔 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝑔))) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹)))
7170expr 459 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑔 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝑔) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹))))
7271com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑔 ∈ (Fil‘𝑋)) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → (𝐴 ∈ (𝐽 fLim 𝑔) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹))))
7372ralrimdva 3189 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) → ∀𝑔 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑔) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹))))
7473imdistanda 574 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))) → (𝐹:𝑋𝑌 ∧ ∀𝑔 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑔) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹)))))
75 cnpflf 22603 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑔 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑔) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑔)‘𝐹)))))
7674, 75sylibrd 261 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)))
7712, 76impbid 214 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  wss 3935   cuni 4831  wf 6345  cfv 6349  (class class class)co 7150  fBascfbas 20527  Topctop 21495  TopOnctopon 21512   CnP ccnp 21827  Filcfil 22447   FilMap cfm 22535   fLim cflim 22536   fLimf cflf 22537   fClus cfcls 22538   fClusf cfcf 22539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-fin 8507  df-fi 8869  df-fbas 20536  df-fg 20537  df-top 21496  df-topon 21513  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-cnp 21830  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-fcls 22543  df-fcf 22544
This theorem is referenced by:  cnfcf  22644
  Copyright terms: Public domain W3C validator