MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflf Structured version   Visualization version   GIF version

Theorem cnpflf 22537
Description: Continuity of a function at a point in terms of filter limits. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
cnpflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
Distinct variable groups:   𝐴,𝑓   𝑓,𝑋   𝑓,𝑌   𝑓,𝐹   𝑓,𝐽   𝑓,𝐾

Proof of Theorem cnpflf
StepHypRef Expression
1 cnpf2 21786 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
213expa 1110 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
323adantl3 1160 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
4 cnpflfi 22535 . . . . . . 7 ((𝐴 ∈ (𝐽 fLim 𝑓) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))
54expcom 414 . . . . . 6 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
65ralrimivw 3180 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
76adantl 482 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
83, 7jca 512 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
98ex 413 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
10 simpl1 1183 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
11 simpl3 1185 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐴𝑋)
12 neiflim 22510 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
1310, 11, 12syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
1411snssd 4734 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → {𝐴} ⊆ 𝑋)
15 snnzg 4702 . . . . . . . 8 (𝐴𝑋 → {𝐴} ≠ ∅)
1611, 15syl 17 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → {𝐴} ≠ ∅)
17 neifil 22416 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
1810, 14, 16, 17syl3anc 1363 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
19 oveq2 7153 . . . . . . . . 9 (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐽 fLim 𝑓) = (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
2019eleq2d 2895 . . . . . . . 8 (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐴 ∈ (𝐽 fLim 𝑓) ↔ 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))))
21 oveq2 7153 . . . . . . . . . 10 (𝑓 = ((nei‘𝐽)‘{𝐴}) → (𝐾 fLimf 𝑓) = (𝐾 fLimf ((nei‘𝐽)‘{𝐴})))
2221fveq1d 6665 . . . . . . . . 9 (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐾 fLimf 𝑓)‘𝐹) = ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))
2322eleq2d 2895 . . . . . . . 8 (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))
2420, 23imbi12d 346 . . . . . . 7 (𝑓 = ((nei‘𝐽)‘{𝐴}) → ((𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
2524rspcv 3615 . . . . . 6 (((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
2618, 25syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})) → (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
2713, 26mpid 44 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) → (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹)))
2827imdistanda 572 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) → (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
29 eqid 2818 . . . 4 ((nei‘𝐽)‘{𝐴}) = ((nei‘𝐽)‘{𝐴})
3029cnpflf2 22536 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf ((nei‘𝐽)‘{𝐴}))‘𝐹))))
3128, 30sylibrd 260 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)))
329, 31impbid 213 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wss 3933  c0 4288  {csn 4557  wf 6344  cfv 6348  (class class class)co 7145  TopOnctopon 21446  neicnei 21633   CnP ccnp 21761  Filcfil 22381   fLim cflim 22470   fLimf cflf 22471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-map 8397  df-fbas 20470  df-fg 20471  df-top 21430  df-topon 21447  df-ntr 21556  df-nei 21634  df-cnp 21764  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476
This theorem is referenced by:  cnflf  22538  cnpfcf  22577
  Copyright terms: Public domain W3C validator