Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprcl Structured version   Visualization version   GIF version

Theorem cnprcl 21030
 Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
iscnp2.1 𝑋 = 𝐽
Assertion
Ref Expression
cnprcl (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)

Proof of Theorem cnprcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscnp2.1 . . . 4 𝑋 = 𝐽
2 eqid 2620 . . . 4 𝐾 = 𝐾
31, 2iscnp2 21024 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
43simplbi 476 . 2 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋))
54simp3d 1073 1 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1481   ∈ wcel 1988  ∀wral 2909  ∃wrex 2910   ⊆ wss 3567  ∪ cuni 4427   “ cima 5107  ⟶wf 5872  ‘cfv 5876  (class class class)co 6635  Topctop 20679   CnP ccnp 21010 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-map 7844  df-top 20680  df-topon 20697  df-cnp 21013 This theorem is referenced by:  cnprcl2  21036  cnpco  21052  cnprest2  21075  ghmcnp  21899  metcnpi  22330  metcnpi2  22331  metcnpi3  22332  limccnp  23636  limccnp2  23637  fouriercnp  40206
 Copyright terms: Public domain W3C validator