MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Visualization version   GIF version

Theorem cnre 9892
Description: Alias for ax-cnre 9865, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 9865 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  wrex 2896  (class class class)co 6527  cc 9790  cr 9791  ici 9794   + caddc 9795   · cmul 9797
This theorem was proved from axioms:  ax-cnre 9865
This theorem is referenced by:  mulid1  9893  1re  9895  mul02  10065  cnegex  10068  recex  10508  creur  10861  creui  10862  cju  10863  cnref1o  11659  replim  13650  ipasslem11  26885
  Copyright terms: Public domain W3C validator