MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnss1 Structured version   Visualization version   GIF version

Theorem cnss1 21020
Description: If the topology 𝐾 is finer than 𝐽, then there are more continuous functions from 𝐾 than from 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss1.1 𝑋 = 𝐽
Assertion
Ref Expression
cnss1 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿))

Proof of Theorem cnss1
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnss1.1 . . . . . 6 𝑋 = 𝐽
2 eqid 2621 . . . . . 6 𝐿 = 𝐿
31, 2cnf 20990 . . . . 5 (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓:𝑋 𝐿)
43adantl 482 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓:𝑋 𝐿)
5 simpllr 798 . . . . . 6 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → 𝐽𝐾)
6 cnima 21009 . . . . . . 7 ((𝑓 ∈ (𝐽 Cn 𝐿) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐽)
76adantll 749 . . . . . 6 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐽)
85, 7sseldd 3589 . . . . 5 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐾)
98ralrimiva 2962 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)
10 simpll 789 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐾 ∈ (TopOn‘𝑋))
11 cntop2 20985 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top)
1211adantl 482 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ Top)
132toptopon 20662 . . . . . 6 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
1412, 13sylib 208 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ (TopOn‘ 𝐿))
15 iscn 20979 . . . . 5 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘ 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋 𝐿 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)))
1610, 14, 15syl2anc 692 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋 𝐿 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)))
174, 9, 16mpbir2and 956 . . 3 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓 ∈ (𝐾 Cn 𝐿))
1817ex 450 . 2 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓 ∈ (𝐾 Cn 𝐿)))
1918ssrdv 3594 1 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2908  wss 3560   cuni 4409  ccnv 5083  cima 5087  wf 5853  cfv 5857  (class class class)co 6615  Topctop 20638  TopOnctopon 20655   Cn ccn 20968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-map 7819  df-top 20639  df-topon 20656  df-cn 20971
This theorem is referenced by:  kgen2cn  21302  xkopjcn  21399
  Copyright terms: Public domain W3C validator