MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntop1 Structured version   Visualization version   GIF version

Theorem cntop1 21850
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cntop1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)

Proof of Theorem cntop1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . 4 𝐽 = 𝐽
2 eqid 2823 . . . 4 𝐾 = 𝐾
31, 2iscn2 21848 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹: 𝐽 𝐾 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
43simplbi 500 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
54simpld 497 1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wral 3140   cuni 4840  ccnv 5556  cima 5560  wf 6353  (class class class)co 7158  Topctop 21503   Cn ccn 21834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-top 21504  df-topon 21521  df-cn 21837
This theorem is referenced by:  cnco  21876  cnclima  21878  cnntri  21881  cnclsi  21882  cnss2  21887  cncnpi  21888  cncnp2  21891  cnrest  21895  cnrest2  21896  cnrest2r  21897  lmcn  21915  cnt0  21956  cnt1  21960  cnhaus  21964  kgen2cn  22169  txcnmpt  22234  uptx  22235  txcn  22236  xkoco1cn  22267  xkoco2cn  22268  xkococnlem  22269  cnmpt21f  22282  qtopss  22325  qtopomap  22328  qtopcmap  22329  hmeofval  22368  hmeof1o  22374  hmeores  22381  hmphen  22395  txhmeo  22413  htpyco2  23585  hauseqcn  31140  cnmbfm  31523  hausgraph  39819  rfcnpre1  41283  fcnre  41289
  Copyright terms: Public domain W3C validator