![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntop2 | Structured version Visualization version GIF version |
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cntop2 | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2651 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 21090 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simplbi 475 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
5 | 4 | simprd 478 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 ∀wral 2941 ∪ cuni 4468 ◡ccnv 5142 “ cima 5146 ⟶wf 5922 (class class class)co 6690 Topctop 20746 Cn ccn 21076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-top 20747 df-topon 20764 df-cn 21079 |
This theorem is referenced by: cnco 21118 cncls2i 21122 cnntri 21123 cnss1 21128 cncnpi 21130 cncnp2 21133 cnrest 21137 cnrest2r 21139 paste 21146 cncmp 21243 rncmp 21247 cnconn 21273 connima 21276 conncn 21277 2ndcomap 21309 kgen2cn 21410 txcnmpt 21475 uptx 21476 lmcn2 21500 xkoco1cn 21508 xkoco2cn 21509 xkococnlem 21510 cnmpt11 21514 cnmpt11f 21515 cnmpt1t 21516 cnmpt12 21518 cnmpt21 21522 cnmpt2t 21524 cnmpt22 21525 cnmpt22f 21526 cnmptcom 21529 cnmpt2k 21539 qtopeu 21567 hmeofval 21609 hmeof1o 21615 hmeontr 21620 hmeores 21622 hmeoqtop 21626 hmphen 21636 reghmph 21644 nrmhmph 21645 txhmeo 21654 xpstopnlem1 21660 flfcntr 21894 cnmpt2pc 22774 ishtpy 22818 htpyco1 22824 htpyco2 22825 isphtpy 22827 phtpyco2 22836 isphtpc 22840 pcofval 22856 pcopt 22868 pcopt2 22869 pcorevlem 22872 pi1cof 22905 pi1coghm 22907 cnmbfm 30453 cnpconn 31338 |
Copyright terms: Public domain | W3C validator |