MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzcmn Structured version   Visualization version   GIF version

Theorem cntzcmn 18291
Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzcmn.b 𝐵 = (Base‘𝐺)
cntzcmn.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
cntzcmn ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) = 𝐵)

Proof of Theorem cntzcmn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzcmn.b . . . 4 𝐵 = (Base‘𝐺)
2 cntzcmn.z . . . 4 𝑍 = (Cntz‘𝐺)
31, 2cntzssv 17807 . . 3 (𝑍𝑆) ⊆ 𝐵
43a1i 11 . 2 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ 𝐵)
5 simpl1 1084 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → 𝐺 ∈ CMnd)
6 simpl3 1086 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → 𝑥𝐵)
7 simp2 1082 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → 𝑆𝐵)
87sselda 3636 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → 𝑦𝐵)
9 eqid 2651 . . . . . . . 8 (+g𝐺) = (+g𝐺)
101, 9cmncom 18255 . . . . . . 7 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
115, 6, 8, 10syl3anc 1366 . . . . . 6 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1211ralrimiva 2995 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
131, 9, 2cntzel 17802 . . . . . 6 ((𝑆𝐵𝑥𝐵) → (𝑥 ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
14133adant1 1099 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → (𝑥 ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
1512, 14mpbird 247 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → 𝑥 ∈ (𝑍𝑆))
16153expia 1286 . . 3 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑥𝐵𝑥 ∈ (𝑍𝑆)))
1716ssrdv 3642 . 2 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → 𝐵 ⊆ (𝑍𝑆))
184, 17eqssd 3653 1 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wss 3607  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  Cntzccntz 17794  CMndccmn 18239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-cntz 17796  df-cmn 18241
This theorem is referenced by:  cntzcmnss  18292  cntzcmnf  18294  ablcntzd  18306  gsumadd  18369
  Copyright terms: Public domain W3C validator