MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsdrg Structured version   Visualization version   GIF version

Theorem cntzsdrg 19580
Description: Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzsdrg.b 𝐵 = (Base‘𝑅)
cntzsdrg.m 𝑀 = (mulGrp‘𝑅)
cntzsdrg.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsdrg ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubDRing‘𝑅))

Proof of Theorem cntzsdrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . 2 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → 𝑅 ∈ DivRing)
2 drngring 19508 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
3 cntzsdrg.b . . . 4 𝐵 = (Base‘𝑅)
4 cntzsdrg.m . . . 4 𝑀 = (mulGrp‘𝑅)
5 cntzsdrg.z . . . 4 𝑍 = (Cntz‘𝑀)
63, 4, 5cntzsubr 19567 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))
72, 6sylan 582 . 2 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))
8 oveq2 7163 . . . . . . 7 (𝑦 = (0g𝑅) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)))
9 oveq1 7162 . . . . . . 7 (𝑦 = (0g𝑅) → (𝑦(.r𝑅)((invr𝑅)‘𝑥)) = ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)))
108, 9eqeq12d 2837 . . . . . 6 (𝑦 = (0g𝑅) → ((((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)) ↔ (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥))))
11 eldifsn 4718 . . . . . . . 8 (𝑦 ∈ (𝑆 ∖ {(0g𝑅)}) ↔ (𝑦𝑆𝑦 ≠ (0g𝑅)))
12 eqid 2821 . . . . . . . . . . . . . 14 (Unit‘𝑅) = (Unit‘𝑅)
134oveq1i 7165 . . . . . . . . . . . . . 14 (𝑀s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
14 eqid 2821 . . . . . . . . . . . . . 14 (invr𝑅) = (invr𝑅)
1512, 13, 14invrfval 19422 . . . . . . . . . . . . 13 (invr𝑅) = (invg‘(𝑀s (Unit‘𝑅)))
16 eqid 2821 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
173, 12, 16isdrng 19505 . . . . . . . . . . . . . . . 16 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)})))
1817simprbi 499 . . . . . . . . . . . . . . 15 (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)}))
1918oveq2d 7171 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → (𝑀s (Unit‘𝑅)) = (𝑀s (𝐵 ∖ {(0g𝑅)})))
2019fveq2d 6673 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → (invg‘(𝑀s (Unit‘𝑅))) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
2115, 20syl5eq 2868 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → (invr𝑅) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
2221ad2antrr 724 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (invr𝑅) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
2322fveq1d 6671 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) = ((invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘𝑥))
244oveq1i 7165 . . . . . . . . . . . . . 14 (𝑀s (𝐵 ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ {(0g𝑅)}))
253, 16, 24drngmgp 19513 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → (𝑀s (𝐵 ∖ {(0g𝑅)})) ∈ Grp)
2625ad2antrr 724 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (𝑀s (𝐵 ∖ {(0g𝑅)})) ∈ Grp)
27 ssdif 4115 . . . . . . . . . . . . 13 (𝑆𝐵 → (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
2827ad2antlr 725 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
29 difss 4107 . . . . . . . . . . . . . 14 (𝐵 ∖ {(0g𝑅)}) ⊆ 𝐵
30 eqid 2821 . . . . . . . . . . . . . . 15 (𝑀s (𝐵 ∖ {(0g𝑅)})) = (𝑀s (𝐵 ∖ {(0g𝑅)}))
314, 3mgpbas 19244 . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑀)
3230, 31ressbas2 16554 . . . . . . . . . . . . . 14 ((𝐵 ∖ {(0g𝑅)}) ⊆ 𝐵 → (𝐵 ∖ {(0g𝑅)}) = (Base‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
3329, 32ax-mp 5 . . . . . . . . . . . . 13 (𝐵 ∖ {(0g𝑅)}) = (Base‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
34 eqid 2821 . . . . . . . . . . . . 13 (Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)}))) = (Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
3533, 34cntzsubg 18466 . . . . . . . . . . . 12 (((𝑀s (𝐵 ∖ {(0g𝑅)})) ∈ Grp ∧ (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∈ (SubGrp‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
3626, 28, 35syl2anc 586 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∈ (SubGrp‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
37 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → 𝑆𝐵)
38 difss 4107 . . . . . . . . . . . . . . . 16 (𝑆 ∖ {(0g𝑅)}) ⊆ 𝑆
3931, 5cntz2ss 18462 . . . . . . . . . . . . . . . 16 ((𝑆𝐵 ∧ (𝑆 ∖ {(0g𝑅)}) ⊆ 𝑆) → (𝑍𝑆) ⊆ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4037, 38, 39sylancl 588 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4140ssdifssd 4118 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → ((𝑍𝑆) ∖ {(0g𝑅)}) ⊆ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4241sselda 3966 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ (𝑍‘(𝑆 ∖ {(0g𝑅)})))
4331, 5cntzssv 18457 . . . . . . . . . . . . . . 15 (𝑍𝑆) ⊆ 𝐵
44 ssdif 4115 . . . . . . . . . . . . . . 15 ((𝑍𝑆) ⊆ 𝐵 → ((𝑍𝑆) ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
4543, 44mp1i 13 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → ((𝑍𝑆) ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)}))
4645sselda 3966 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ (𝐵 ∖ {(0g𝑅)}))
4742, 46elind 4170 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ ((𝑍‘(𝑆 ∖ {(0g𝑅)})) ∩ (𝐵 ∖ {(0g𝑅)})))
483fvexi 6683 . . . . . . . . . . . . . 14 𝐵 ∈ V
4948difexi 5231 . . . . . . . . . . . . 13 (𝐵 ∖ {(0g𝑅)}) ∈ V
5030, 5, 34resscntz 18461 . . . . . . . . . . . . 13 (((𝐵 ∖ {(0g𝑅)}) ∈ V ∧ (𝑆 ∖ {(0g𝑅)}) ⊆ (𝐵 ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) = ((𝑍‘(𝑆 ∖ {(0g𝑅)})) ∩ (𝐵 ∖ {(0g𝑅)})))
5149, 28, 50sylancr 589 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) = ((𝑍‘(𝑆 ∖ {(0g𝑅)})) ∩ (𝐵 ∖ {(0g𝑅)})))
5247, 51eleqtrrd 2916 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
53 eqid 2821 . . . . . . . . . . . 12 (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)}))) = (invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
5453subginvcl 18287 . . . . . . . . . . 11 ((((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∈ (SubGrp‘(𝑀s (𝐵 ∖ {(0g𝑅)}))) ∧ 𝑥 ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)}))) → ((invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
5536, 52, 54syl2anc 586 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invg‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
5623, 55eqeltrd 2913 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})))
57 eqid 2821 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
584, 57mgpplusg 19242 . . . . . . . . . . . 12 (.r𝑅) = (+g𝑀)
5930, 58ressplusg 16611 . . . . . . . . . . 11 ((𝐵 ∖ {(0g𝑅)}) ∈ V → (.r𝑅) = (+g‘(𝑀s (𝐵 ∖ {(0g𝑅)}))))
6049, 59ax-mp 5 . . . . . . . . . 10 (.r𝑅) = (+g‘(𝑀s (𝐵 ∖ {(0g𝑅)})))
6160, 34cntzi 18458 . . . . . . . . 9 ((((invr𝑅)‘𝑥) ∈ ((Cntz‘(𝑀s (𝐵 ∖ {(0g𝑅)})))‘(𝑆 ∖ {(0g𝑅)})) ∧ 𝑦 ∈ (𝑆 ∖ {(0g𝑅)})) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
6256, 61sylan 582 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦 ∈ (𝑆 ∖ {(0g𝑅)})) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
6311, 62sylan2br 596 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ (𝑦𝑆𝑦 ≠ (0g𝑅))) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
6463anassrs 470 . . . . . 6 (((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) ∧ 𝑦 ≠ (0g𝑅)) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
652ad3antrrr 728 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → 𝑅 ∈ Ring)
661adantr 483 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑅 ∈ DivRing)
67 eldifi 4102 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)}) → 𝑥 ∈ (𝑍𝑆))
6867adantl 484 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ∈ (𝑍𝑆))
6943, 68sseldi 3964 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥𝐵)
70 eldifsni 4721 . . . . . . . . . . 11 (𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)}) → 𝑥 ≠ (0g𝑅))
7170adantl 484 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑥 ≠ (0g𝑅))
723, 16, 14drnginvrcl 19518 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝑥𝐵𝑥 ≠ (0g𝑅)) → ((invr𝑅)‘𝑥) ∈ 𝐵)
7366, 69, 71, 72syl3anc 1367 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) ∈ 𝐵)
7473adantr 483 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → ((invr𝑅)‘𝑥) ∈ 𝐵)
753, 57, 16ringrz 19337 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑥) ∈ 𝐵) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = (0g𝑅))
7665, 74, 75syl2anc 586 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = (0g𝑅))
773, 57, 16ringlz 19336 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑥) ∈ 𝐵) → ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)) = (0g𝑅))
7865, 74, 77syl2anc 586 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)) = (0g𝑅))
7976, 78eqtr4d 2859 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = ((0g𝑅)(.r𝑅)((invr𝑅)‘𝑥)))
8010, 64, 79pm2.61ne 3102 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) ∧ 𝑦𝑆) → (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
8180ralrimiva 3182 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ∀𝑦𝑆 (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥)))
82 simplr 767 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → 𝑆𝐵)
8331, 58, 5cntzel 18452 . . . . 5 ((𝑆𝐵 ∧ ((invr𝑅)‘𝑥) ∈ 𝐵) → (((invr𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥))))
8482, 73, 83syl2anc 586 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → (((invr𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invr𝑅)‘𝑥)(.r𝑅)𝑦) = (𝑦(.r𝑅)((invr𝑅)‘𝑥))))
8581, 84mpbird 259 . . 3 (((𝑅 ∈ DivRing ∧ 𝑆𝐵) ∧ 𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})) → ((invr𝑅)‘𝑥) ∈ (𝑍𝑆))
8685ralrimiva 3182 . 2 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → ∀𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ (𝑍𝑆))
8714, 16issdrg2 19576 . 2 ((𝑍𝑆) ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑍𝑆) ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ ((𝑍𝑆) ∖ {(0g𝑅)})((invr𝑅)‘𝑥) ∈ (𝑍𝑆)))
881, 7, 86, 87syl3anbrc 1339 1 ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubDRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3494  cdif 3932  cin 3934  wss 3935  {csn 4566  cfv 6354  (class class class)co 7155  Basecbs 16482  s cress 16483  +gcplusg 16564  .rcmulr 16565  0gc0g 16712  Grpcgrp 18102  invgcminusg 18103  SubGrpcsubg 18272  Cntzccntz 18444  mulGrpcmgp 19238  Ringcrg 19296  Unitcui 19388  invrcinvr 19420  DivRingcdr 19501  SubRingcsubrg 19530  SubDRingcsdrg 19571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-grp 18105  df-minusg 18106  df-subg 18275  df-cntz 18446  df-mgp 19239  df-ur 19251  df-ring 19298  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-drng 19503  df-subrg 19532  df-sdrg 19572
This theorem is referenced by:  primefld  19583
  Copyright terms: Public domain W3C validator