MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzssv Structured version   Visualization version   GIF version

Theorem cntzssv 18457
Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cntzrcl.b 𝐵 = (Base‘𝑀)
cntzrcl.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzssv (𝑍𝑆) ⊆ 𝐵

Proof of Theorem cntzssv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4349 . . 3 ∅ ⊆ 𝐵
2 sseq1 3991 . . 3 ((𝑍𝑆) = ∅ → ((𝑍𝑆) ⊆ 𝐵 ↔ ∅ ⊆ 𝐵))
31, 2mpbiri 260 . 2 ((𝑍𝑆) = ∅ → (𝑍𝑆) ⊆ 𝐵)
4 n0 4309 . . 3 ((𝑍𝑆) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍𝑆))
5 cntzrcl.b . . . . . . 7 𝐵 = (Base‘𝑀)
6 cntzrcl.z . . . . . . 7 𝑍 = (Cntz‘𝑀)
75, 6cntzrcl 18456 . . . . . 6 (𝑥 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆𝐵))
8 eqid 2821 . . . . . . 7 (+g𝑀) = (+g𝑀)
95, 8, 6cntzval 18450 . . . . . 6 (𝑆𝐵 → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)})
107, 9simpl2im 506 . . . . 5 (𝑥 ∈ (𝑍𝑆) → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)})
11 ssrab2 4055 . . . . 5 {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)} ⊆ 𝐵
1210, 11eqsstrdi 4020 . . . 4 (𝑥 ∈ (𝑍𝑆) → (𝑍𝑆) ⊆ 𝐵)
1312exlimiv 1927 . . 3 (∃𝑥 𝑥 ∈ (𝑍𝑆) → (𝑍𝑆) ⊆ 𝐵)
144, 13sylbi 219 . 2 ((𝑍𝑆) ≠ ∅ → (𝑍𝑆) ⊆ 𝐵)
153, 14pm2.61ine 3100 1 (𝑍𝑆) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  {crab 3142  Vcvv 3494  wss 3935  c0 4290  cfv 6354  (class class class)co 7155  Basecbs 16482  +gcplusg 16564  Cntzccntz 18444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-cntz 18446
This theorem is referenced by:  cntrss  18459  cntz2ss  18462  cntzsubm  18465  cntzsubg  18466  cntzidss  18467  cntzmhm  18468  cntzmhm2  18469  cntzcmn  18959  cntzspan  18963  cntzsubr  19567  cntzsdrg  19580
  Copyright terms: Public domain W3C validator