MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubr Structured version   Visualization version   GIF version

Theorem cntzsubr 19567
Description: Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
cntzsubr.b 𝐵 = (Base‘𝑅)
cntzsubr.m 𝑀 = (mulGrp‘𝑅)
cntzsubr.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsubr ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))

Proof of Theorem cntzsubr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzsubr.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
2 cntzsubr.b . . . . . 6 𝐵 = (Base‘𝑅)
31, 2mgpbas 19244 . . . . 5 𝐵 = (Base‘𝑀)
4 cntzsubr.z . . . . 5 𝑍 = (Cntz‘𝑀)
53, 4cntzssv 18457 . . . 4 (𝑍𝑆) ⊆ 𝐵
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ 𝐵)
7 simpll 765 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → 𝑅 ∈ Ring)
8 ssel2 3961 . . . . . . . . 9 ((𝑆𝐵𝑧𝑆) → 𝑧𝐵)
98adantll 712 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → 𝑧𝐵)
10 eqid 2821 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
11 eqid 2821 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
122, 10, 11ringlz 19336 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑧𝐵) → ((0g𝑅)(.r𝑅)𝑧) = (0g𝑅))
137, 9, 12syl2anc 586 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → ((0g𝑅)(.r𝑅)𝑧) = (0g𝑅))
142, 10, 11ringrz 19337 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑧𝐵) → (𝑧(.r𝑅)(0g𝑅)) = (0g𝑅))
157, 9, 14syl2anc 586 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → (𝑧(.r𝑅)(0g𝑅)) = (0g𝑅))
1613, 15eqtr4d 2859 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅)))
1716ralrimiva 3182 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅)))
18 simpr 487 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → 𝑆𝐵)
192, 11ring0cl 19318 . . . . . . 7 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
2019adantr 483 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (0g𝑅) ∈ 𝐵)
211, 10mgpplusg 19242 . . . . . . 7 (.r𝑅) = (+g𝑀)
223, 21, 4cntzel 18452 . . . . . 6 ((𝑆𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((0g𝑅) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅))))
2318, 20, 22syl2anc 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ((0g𝑅) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅))))
2417, 23mpbird 259 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (0g𝑅) ∈ (𝑍𝑆))
2524ne0d 4300 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ≠ ∅)
26 simpl2 1188 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥 ∈ (𝑍𝑆))
27 simpr 487 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝑆)
2821, 4cntzi 18458 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
2926, 27, 28syl2anc 586 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
30 simpl3 1189 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑦 ∈ (𝑍𝑆))
3121, 4cntzi 18458 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑍𝑆) ∧ 𝑧𝑆) → (𝑦(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑦))
3230, 27, 31syl2anc 586 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑦(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑦))
3329, 32oveq12d 7173 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
34 simpl1l 1220 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑅 ∈ Ring)
355, 26sseldi 3964 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥𝐵)
365, 30sseldi 3964 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑦𝐵)
37 simp1r 1194 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑆𝐵)
3837sselda 3966 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝐵)
39 eqid 2821 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
402, 39, 10ringdir 19316 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
4134, 35, 36, 38, 40syl13anc 1368 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
422, 39, 10ringdi 19315 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑧𝐵𝑥𝐵𝑦𝐵)) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4334, 38, 35, 36, 42syl13anc 1368 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4433, 41, 433eqtr4d 2866 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
4544ralrimiva 3182 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
46 simp1l 1193 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑅 ∈ Ring)
47 simp2 1133 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
485, 47sseldi 3964 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑥𝐵)
49 simp3 1134 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑦 ∈ (𝑍𝑆))
505, 49sseldi 3964 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑦𝐵)
512, 39ringacl 19327 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
5246, 48, 50, 51syl3anc 1367 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
533, 21, 4cntzel 18452 . . . . . . . . 9 ((𝑆𝐵 ∧ (𝑥(+g𝑅)𝑦) ∈ 𝐵) → ((𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))))
5437, 52, 53syl2anc 586 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → ((𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))))
5545, 54mpbird 259 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
56553expa 1114 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
5756ralrimiva 3182 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
5828adantll 712 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
5958fveq2d 6673 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((invg𝑅)‘(𝑥(.r𝑅)𝑧)) = ((invg𝑅)‘(𝑧(.r𝑅)𝑥)))
60 eqid 2821 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
61 simplll 773 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑅 ∈ Ring)
62 simplr 767 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥 ∈ (𝑍𝑆))
635, 62sseldi 3964 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥𝐵)
64 simplr 767 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑆𝐵)
6564sselda 3966 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝐵)
662, 10, 60, 61, 63, 65ringmneg1 19345 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = ((invg𝑅)‘(𝑥(.r𝑅)𝑧)))
672, 10, 60, 61, 65, 63ringmneg2 19346 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑧(.r𝑅)((invg𝑅)‘𝑥)) = ((invg𝑅)‘(𝑧(.r𝑅)𝑥)))
6859, 66, 673eqtr4d 2866 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥)))
6968ralrimiva 3182 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥)))
70 ringgrp 19301 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
7170ad2antrr 724 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑅 ∈ Grp)
72 simpr 487 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
735, 72sseldi 3964 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥𝐵)
742, 60grpinvcl 18150 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐵) → ((invg𝑅)‘𝑥) ∈ 𝐵)
7571, 73, 74syl2anc 586 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑅)‘𝑥) ∈ 𝐵)
763, 21, 4cntzel 18452 . . . . . . 7 ((𝑆𝐵 ∧ ((invg𝑅)‘𝑥) ∈ 𝐵) → (((invg𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥))))
7764, 75, 76syl2anc 586 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (((invg𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥))))
7869, 77mpbird 259 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑅)‘𝑥) ∈ (𝑍𝑆))
7957, 78jca 514 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))
8079ralrimiva 3182 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))
8170adantr 483 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → 𝑅 ∈ Grp)
822, 39, 60issubg2 18293 . . . 4 (𝑅 ∈ Grp → ((𝑍𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (𝑍𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))))
8381, 82syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (𝑍𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))))
846, 25, 80, 83mpbir3and 1338 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubGrp‘𝑅))
851ringmgp 19302 . . 3 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
863, 4cntzsubm 18465 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
8785, 86sylan 582 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
881issubrg3 19562 . . 3 (𝑅 ∈ Ring → ((𝑍𝑆) ∈ (SubRing‘𝑅) ↔ ((𝑍𝑆) ∈ (SubGrp‘𝑅) ∧ (𝑍𝑆) ∈ (SubMnd‘𝑀))))
8988adantr 483 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubRing‘𝑅) ↔ ((𝑍𝑆) ∈ (SubGrp‘𝑅) ∧ (𝑍𝑆) ∈ (SubMnd‘𝑀))))
9084, 87, 89mpbir2and 711 1 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wss 3935  c0 4290  cfv 6354  (class class class)co 7155  Basecbs 16482  +gcplusg 16564  .rcmulr 16565  0gc0g 16712  Mndcmnd 17910  SubMndcsubmnd 17954  Grpcgrp 18102  invgcminusg 18103  SubGrpcsubg 18272  Cntzccntz 18444  mulGrpcmgp 19238  Ringcrg 19296  SubRingcsubrg 19530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-grp 18105  df-minusg 18106  df-subg 18275  df-cntz 18446  df-mgp 19239  df-ur 19251  df-ring 19298  df-subrg 19532
This theorem is referenced by:  cntzsdrg  19580  cntrcrng  30697
  Copyright terms: Public domain W3C validator