MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzval Structured version   Visualization version   GIF version

Theorem cntzval 18454
Description: Definition substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzval (𝑆𝐵 → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem cntzval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 cntzfval.b . . . . 5 𝐵 = (Base‘𝑀)
2 cntzfval.p . . . . 5 + = (+g𝑀)
3 cntzfval.z . . . . 5 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzfval 18453 . . . 4 (𝑀 ∈ V → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
54fveq1d 6675 . . 3 (𝑀 ∈ V → (𝑍𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})‘𝑆))
61fvexi 6687 . . . . 5 𝐵 ∈ V
76elpw2 5251 . . . 4 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
8 raleq 3408 . . . . . 6 (𝑠 = 𝑆 → (∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
98rabbidv 3483 . . . . 5 (𝑠 = 𝑆 → {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)} = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
10 eqid 2824 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
116rabex 5238 . . . . 5 {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ∈ V
129, 10, 11fvmpt 6771 . . . 4 (𝑆 ∈ 𝒫 𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})‘𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
137, 12sylbir 237 . . 3 (𝑆𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})‘𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
145, 13sylan9eq 2879 . 2 ((𝑀 ∈ V ∧ 𝑆𝐵) → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
15 0fv 6712 . . . 4 (∅‘𝑆) = ∅
16 fvprc 6666 . . . . . 6 𝑀 ∈ V → (Cntz‘𝑀) = ∅)
173, 16syl5eq 2871 . . . . 5 𝑀 ∈ V → 𝑍 = ∅)
1817fveq1d 6675 . . . 4 𝑀 ∈ V → (𝑍𝑆) = (∅‘𝑆))
19 ssrab2 4059 . . . . . 6 {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ⊆ 𝐵
20 fvprc 6666 . . . . . . 7 𝑀 ∈ V → (Base‘𝑀) = ∅)
211, 20syl5eq 2871 . . . . . 6 𝑀 ∈ V → 𝐵 = ∅)
2219, 21sseqtrid 4022 . . . . 5 𝑀 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ⊆ ∅)
23 ss0 4355 . . . . 5 ({𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ⊆ ∅ → {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} = ∅)
2422, 23syl 17 . . . 4 𝑀 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)} = ∅)
2515, 18, 243eqtr4a 2885 . . 3 𝑀 ∈ V → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
2625adantr 483 . 2 ((¬ 𝑀 ∈ V ∧ 𝑆𝐵) → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
2714, 26pm2.61ian 810 1 (𝑆𝐵 → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1536  wcel 2113  wral 3141  {crab 3145  Vcvv 3497  wss 3939  c0 4294  𝒫 cpw 4542  cmpt 5149  cfv 6358  (class class class)co 7159  Basecbs 16486  +gcplusg 16568  Cntzccntz 18448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-cntz 18450
This theorem is referenced by:  elcntz  18455  cntzsnval  18457  sscntz  18459  cntzssv  18461  cntziinsn  18468
  Copyright terms: Public domain W3C validator