Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvco1 Structured version   Visualization version   GIF version

Theorem cnvco1 31355
Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
cnvco1 (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5462 . 2 Rel (𝐴𝐵)
2 relco 5592 . 2 Rel (𝐵𝐴)
3 vex 3189 . . . . . . 7 𝑧 ∈ V
4 vex 3189 . . . . . . 7 𝑦 ∈ V
53, 4brcnv 5265 . . . . . 6 (𝑧𝐵𝑦𝑦𝐵𝑧)
65bicomi 214 . . . . 5 (𝑦𝐵𝑧𝑧𝐵𝑦)
7 vex 3189 . . . . . 6 𝑥 ∈ V
83, 7brcnv 5265 . . . . 5 (𝑧𝐴𝑥𝑥𝐴𝑧)
96, 8anbi12ci 733 . . . 4 ((𝑦𝐵𝑧𝑧𝐴𝑥) ↔ (𝑥𝐴𝑧𝑧𝐵𝑦))
109exbii 1771 . . 3 (∃𝑧(𝑦𝐵𝑧𝑧𝐴𝑥) ↔ ∃𝑧(𝑥𝐴𝑧𝑧𝐵𝑦))
117, 4opelcnv 5264 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵))
124, 7opelco 5253 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑦𝐵𝑧𝑧𝐴𝑥))
1311, 12bitri 264 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑦𝐵𝑧𝑧𝐴𝑥))
147, 4opelco 5253 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐴) ↔ ∃𝑧(𝑥𝐴𝑧𝑧𝐵𝑦))
1510, 13, 143bitr4i 292 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵𝐴))
161, 2, 15eqrelriiv 5175 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wex 1701  wcel 1987  cop 4154   class class class wbr 4613  ccnv 5073  ccom 5078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083
This theorem is referenced by:  pprodcnveq  31629
  Copyright terms: Public domain W3C validator