MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvdif Structured version   Visualization version   GIF version

Theorem cnvdif 5440
Description: Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvdif (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvdif
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5405 . 2 Rel (𝐴𝐵)
2 difss 3694 . . 3 (𝐴𝐵) ⊆ 𝐴
3 relcnv 5405 . . 3 Rel 𝐴
4 relss 5115 . . 3 ((𝐴𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴𝐵)))
52, 3, 4mp2 9 . 2 Rel (𝐴𝐵)
6 eldif 3545 . . 3 (⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵))
7 vex 3171 . . . 4 𝑥 ∈ V
8 vex 3171 . . . 4 𝑦 ∈ V
97, 8opelcnv 5210 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵))
10 eldif 3545 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
117, 8opelcnv 5210 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
127, 8opelcnv 5210 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1312notbii 308 . . . . 5 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1411, 13anbi12i 728 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵))
1510, 14bitri 262 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵))
166, 9, 153bitr4i 290 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵))
171, 5, 16eqrelriiv 5122 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 382   = wceq 1474  wcel 1975  cdif 3532  wss 3535  cop 4126  ccnv 5023  Rel wrel 5029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pr 4824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ral 2896  df-rex 2897  df-rab 2900  df-v 3170  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-sn 4121  df-pr 4123  df-op 4127  df-br 4574  df-opab 4634  df-xp 5030  df-rel 5031  df-cnv 5032
This theorem is referenced by:  cnvin  5441  gtiso  28663  mthmpps  30535  cnvnonrel  36712
  Copyright terms: Public domain W3C validator