![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvintabd | Structured version Visualization version GIF version |
Description: Value of the converse of the intersection of a non-empty class. (Contributed by RP, 20-Aug-2020.) |
Ref | Expression |
---|---|
cnvintabd.x | ⊢ (𝜑 → ∃𝑥𝜓) |
Ref | Expression |
---|---|
cnvintabd | ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvintabd.x | . . . . . 6 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | pm5.5 350 | . . . . . 6 ⊢ (∃𝑥𝜓 → ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V))) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V))) |
4 | 3 | bicomd 213 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (V × V) ↔ (∃𝑥𝜓 → 𝑦 ∈ (V × V)))) |
5 | 4 | anbi1d 741 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)) ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)))) |
6 | elcnvintab 38225 | . . 3 ⊢ (𝑦 ∈ ◡∩ {𝑥 ∣ 𝜓} ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥))) | |
7 | vex 3234 | . . . 4 ⊢ 𝑦 ∈ V | |
8 | vex 3234 | . . . . . 6 ⊢ 𝑥 ∈ V | |
9 | 8 | cnvex 7155 | . . . . 5 ⊢ ◡𝑥 ∈ V |
10 | relcnv 5538 | . . . . . 6 ⊢ Rel ◡𝑥 | |
11 | df-rel 5150 | . . . . . 6 ⊢ (Rel ◡𝑥 ↔ ◡𝑥 ⊆ (V × V)) | |
12 | 10, 11 | mpbi 220 | . . . . 5 ⊢ ◡𝑥 ⊆ (V × V) |
13 | 9, 12 | elmapintrab 38199 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)))) |
14 | 7, 13 | ax-mp 5 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥))) |
15 | 5, 6, 14 | 3bitr4g 303 | . 2 ⊢ (𝜑 → (𝑦 ∈ ◡∩ {𝑥 ∣ 𝜓} ↔ 𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)})) |
16 | 15 | eqrdv 2649 | 1 ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 = wceq 1523 ∃wex 1744 ∈ wcel 2030 {cab 2637 {crab 2945 Vcvv 3231 ⊆ wss 3607 𝒫 cpw 4191 ∩ cint 4507 × cxp 5141 ◡ccnv 5142 Rel wrel 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-int 4508 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fv 5934 df-1st 7210 df-2nd 7211 |
This theorem is referenced by: clcnvlem 38247 |
Copyright terms: Public domain | W3C validator |