Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvintabd Structured version   Visualization version   GIF version

Theorem cnvintabd 38226
Description: Value of the converse of the intersection of a non-empty class. (Contributed by RP, 20-Aug-2020.)
Hypothesis
Ref Expression
cnvintabd.x (𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
cnvintabd (𝜑 {𝑥𝜓} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)})
Distinct variable groups:   𝜓,𝑤   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑥)

Proof of Theorem cnvintabd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnvintabd.x . . . . . 6 (𝜑 → ∃𝑥𝜓)
2 pm5.5 350 . . . . . 6 (∃𝑥𝜓 → ((∃𝑥𝜓𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V)))
31, 2syl 17 . . . . 5 (𝜑 → ((∃𝑥𝜓𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V)))
43bicomd 213 . . . 4 (𝜑 → (𝑦 ∈ (V × V) ↔ (∃𝑥𝜓𝑦 ∈ (V × V))))
54anbi1d 741 . . 3 (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)) ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
6 elcnvintab 38225 . . 3 (𝑦 {𝑥𝜓} ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓𝑦𝑥)))
7 vex 3234 . . . 4 𝑦 ∈ V
8 vex 3234 . . . . . 6 𝑥 ∈ V
98cnvex 7155 . . . . 5 𝑥 ∈ V
10 relcnv 5538 . . . . . 6 Rel 𝑥
11 df-rel 5150 . . . . . 6 (Rel 𝑥𝑥 ⊆ (V × V))
1210, 11mpbi 220 . . . . 5 𝑥 ⊆ (V × V)
139, 12elmapintrab 38199 . . . 4 (𝑦 ∈ V → (𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)} ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥))))
147, 13ax-mp 5 . . 3 (𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)} ↔ ((∃𝑥𝜓𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓𝑦𝑥)))
155, 6, 143bitr4g 303 . 2 (𝜑 → (𝑦 {𝑥𝜓} ↔ 𝑦 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)}))
1615eqrdv 2649 1 (𝜑 {𝑥𝜓} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wex 1744  wcel 2030  {cab 2637  {crab 2945  Vcvv 3231  wss 3607  𝒫 cpw 4191   cint 4507   × cxp 5141  ccnv 5142  Rel wrel 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-iota 5889  df-fun 5928  df-fv 5934  df-1st 7210  df-2nd 7211
This theorem is referenced by:  clcnvlem  38247
  Copyright terms: Public domain W3C validator