MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvopab Structured version   Visualization version   GIF version

Theorem cnvopab 5436
Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvopab {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cnvopab
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5406 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 relopab 5154 . 2 Rel {⟨𝑦, 𝑥⟩ ∣ 𝜑}
3 opelopabsbALT 4896 . . . 4 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑)
4 sbcom2 2429 . . . 4 ([𝑧 / 𝑦][𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥][𝑧 / 𝑦]𝜑)
53, 4bitri 262 . . 3 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑥][𝑧 / 𝑦]𝜑)
6 vex 3172 . . . 4 𝑧 ∈ V
7 vex 3172 . . . 4 𝑤 ∈ V
86, 7opelcnv 5211 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
9 opelopabsbALT 4896 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑} ↔ [𝑤 / 𝑥][𝑧 / 𝑦]𝜑)
105, 8, 93bitr4i 290 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑})
111, 2, 10eqrelriiv 5123 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  [wsb 1866  wcel 1976  cop 4127  {copab 4633  ccnv 5024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pr 4825
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-sn 4122  df-pr 4124  df-op 4128  df-br 4575  df-opab 4635  df-xp 5031  df-rel 5032  df-cnv 5033
This theorem is referenced by:  mptcnv  5437  cnvxp  5453  mptpreima  5528  f1ocnvd  6756  mapsncnv  7764  compsscnv  9050  dfiso2  16198  xkocnv  21366  lgsquadlem3  24821  axcontlem2  25560  cnvadj  27938  f1o3d  28616  cnvoprab  28689  fsovrfovd  37123
  Copyright terms: Public domain W3C validator