Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvpo Structured version   Visualization version   GIF version

Theorem cnvpo 5711
 Description: The converse of a partial order relation is a partial order relation. (Contributed by NM, 15-Jun-2005.)
Assertion
Ref Expression
cnvpo (𝑅 Po 𝐴𝑅 Po 𝐴)

Proof of Theorem cnvpo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 3093 . . . . . . 7 (∀𝑧𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ (∀𝑧𝐴 ¬ 𝑧𝑅𝑧 ∧ ∀𝑧𝐴 ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
2 vex 3234 . . . . . . . . . . . 12 𝑧 ∈ V
32, 2brcnv 5337 . . . . . . . . . . 11 (𝑧𝑅𝑧𝑧𝑅𝑧)
4 id 22 . . . . . . . . . . . 12 (𝑧 = 𝑥𝑧 = 𝑥)
54, 4breq12d 4698 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑧𝑅𝑧𝑥𝑅𝑥))
63, 5syl5bb 272 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧𝑅𝑧𝑥𝑅𝑥))
76notbid 307 . . . . . . . . 9 (𝑧 = 𝑥 → (¬ 𝑧𝑅𝑧 ↔ ¬ 𝑥𝑅𝑥))
87cbvralv 3201 . . . . . . . 8 (∀𝑧𝐴 ¬ 𝑧𝑅𝑧 ↔ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
9 vex 3234 . . . . . . . . . . . 12 𝑦 ∈ V
102, 9brcnv 5337 . . . . . . . . . . 11 (𝑧𝑅𝑦𝑦𝑅𝑧)
11 vex 3234 . . . . . . . . . . . 12 𝑥 ∈ V
129, 11brcnv 5337 . . . . . . . . . . 11 (𝑦𝑅𝑥𝑥𝑅𝑦)
1310, 12anbi12ci 734 . . . . . . . . . 10 ((𝑧𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧))
142, 11brcnv 5337 . . . . . . . . . 10 (𝑧𝑅𝑥𝑥𝑅𝑧)
1513, 14imbi12i 339 . . . . . . . . 9 (((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1615ralbii 3009 . . . . . . . 8 (∀𝑧𝐴 ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥) ↔ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
178, 16anbi12i 733 . . . . . . 7 ((∀𝑧𝐴 ¬ 𝑧𝑅𝑧 ∧ ∀𝑧𝐴 ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
181, 17bitr2i 265 . . . . . 6 ((∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
1918ralbii 3009 . . . . 5 (∀𝑥𝐴 (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴𝑧𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
20 r19.26 3093 . . . . . . 7 (∀𝑥𝐴 (∀𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
21 ralidm 4108 . . . . . . . . 9 (∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
22 rzal 4106 . . . . . . . . . . 11 (𝐴 = ∅ → ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
23 rzal 4106 . . . . . . . . . . 11 (𝐴 = ∅ → ∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥)
2422, 232thd 255 . . . . . . . . . 10 (𝐴 = ∅ → (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥))
25 r19.3rzv 4097 . . . . . . . . . . 11 (𝐴 ≠ ∅ → (¬ 𝑥𝑅𝑥 ↔ ∀𝑧𝐴 ¬ 𝑥𝑅𝑥))
2625ralbidv 3015 . . . . . . . . . 10 (𝐴 ≠ ∅ → (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥))
2724, 26pm2.61ine 2906 . . . . . . . . 9 (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥)
2821, 27bitr2i 265 . . . . . . . 8 (∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥)
2928anbi1i 731 . . . . . . 7 ((∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
3020, 29bitri 264 . . . . . 6 (∀𝑥𝐴 (∀𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
31 r19.26 3093 . . . . . . 7 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
3231ralbii 3009 . . . . . 6 (∀𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴 (∀𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
33 r19.26 3093 . . . . . 6 (∀𝑥𝐴 (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
3430, 32, 333bitr4i 292 . . . . 5 (∀𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴 (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
35 ralcom 3127 . . . . 5 (∀𝑧𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ∀𝑥𝐴𝑧𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
3619, 34, 353bitr4i 292 . . . 4 (∀𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
3736ralbii 3009 . . 3 (∀𝑦𝐴𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦𝐴𝑧𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
38 ralcom 3127 . . 3 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦𝐴𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
39 ralcom 3127 . . 3 (∀𝑧𝐴𝑦𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ∀𝑦𝐴𝑧𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
4037, 38, 393bitr4i 292 . 2 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑦𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
41 df-po 5064 . 2 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
42 df-po 5064 . 2 (𝑅 Po 𝐴 ↔ ∀𝑧𝐴𝑦𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
4340, 41, 423bitr4i 292 1 (𝑅 Po 𝐴𝑅 Po 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ≠ wne 2823  ∀wral 2941  ∅c0 3948   class class class wbr 4685   Po wpo 5062  ◡ccnv 5142 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-po 5064  df-cnv 5151 This theorem is referenced by:  cnvso  5712  fimax2g  8247  fin23lem40  9211  isfin1-3  9246
 Copyright terms: Public domain W3C validator