Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvresima Structured version   Visualization version   GIF version

Theorem cnvresima 5587
 Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.)
Assertion
Ref Expression
cnvresima ((𝐹𝐴) “ 𝐵) = ((𝐹𝐵) ∩ 𝐴)

Proof of Theorem cnvresima
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.41v 1911 . . . 4 (∃𝑠((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴) ↔ (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
2 vex 3192 . . . . . . . 8 𝑠 ∈ V
32opelres 5366 . . . . . . 7 (⟨𝑡, 𝑠⟩ ∈ (𝐹𝐴) ↔ (⟨𝑡, 𝑠⟩ ∈ 𝐹𝑡𝐴))
4 vex 3192 . . . . . . . 8 𝑡 ∈ V
52, 4opelcnv 5269 . . . . . . 7 (⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴) ↔ ⟨𝑡, 𝑠⟩ ∈ (𝐹𝐴))
62, 4opelcnv 5269 . . . . . . . 8 (⟨𝑠, 𝑡⟩ ∈ 𝐹 ↔ ⟨𝑡, 𝑠⟩ ∈ 𝐹)
76anbi1i 730 . . . . . . 7 ((⟨𝑠, 𝑡⟩ ∈ 𝐹𝑡𝐴) ↔ (⟨𝑡, 𝑠⟩ ∈ 𝐹𝑡𝐴))
83, 5, 73bitr4i 292 . . . . . 6 (⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴) ↔ (⟨𝑠, 𝑡⟩ ∈ 𝐹𝑡𝐴))
98bianass 841 . . . . 5 ((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ ((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
109exbii 1771 . . . 4 (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ ∃𝑠((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
114elima3 5437 . . . . 5 (𝑡 ∈ (𝐹𝐵) ↔ ∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹))
1211anbi1i 730 . . . 4 ((𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴) ↔ (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
131, 10, 123bitr4i 292 . . 3 (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ (𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴))
144elima3 5437 . . 3 (𝑡 ∈ ((𝐹𝐴) “ 𝐵) ↔ ∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)))
15 elin 3779 . . 3 (𝑡 ∈ ((𝐹𝐵) ∩ 𝐴) ↔ (𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴))
1613, 14, 153bitr4i 292 . 2 (𝑡 ∈ ((𝐹𝐴) “ 𝐵) ↔ 𝑡 ∈ ((𝐹𝐵) ∩ 𝐴))
1716eqriv 2618 1 ((𝐹𝐴) “ 𝐵) = ((𝐹𝐵) ∩ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 384   = wceq 1480  ∃wex 1701   ∈ wcel 1987   ∩ cin 3558  ⟨cop 4159  ◡ccnv 5078   ↾ cres 5081   “ cima 5082 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-xp 5085  df-cnv 5087  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092 This theorem is referenced by:  fimacnvinrn  6309  ramub2  15653  ramub1lem2  15666  cnrest  21012  kgencn  21282  kgencn3  21284  xkoptsub  21380  qtopres  21424  qtoprest  21443  mbfid  23326  mbfres  23334  1stpreima  29350  2ndpreima  29351  cvmsss2  30999  lmhmlnmsplit  37172
 Copyright terms: Public domain W3C validator