Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvtrclfv Structured version   Visualization version   GIF version

Theorem cnvtrclfv 36829
Description: The converse of the transitive closure is equal to the transitive closure of the converse relation. (Contributed by RP, 19-Jul-2020.)
Assertion
Ref Expression
cnvtrclfv (𝑅𝑉(t+‘𝑅) = (t+‘𝑅))

Proof of Theorem cnvtrclfv
Dummy variables 𝑛 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝑅𝑉𝑅 ∈ V)
2 nnnn0 11149 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
3 relexpcnv 13572 . . . . . . 7 ((𝑛 ∈ ℕ0𝑅 ∈ V) → (𝑅𝑟𝑛) = (𝑅𝑟𝑛))
42, 3sylan 487 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑅 ∈ V) → (𝑅𝑟𝑛) = (𝑅𝑟𝑛))
54expcom 450 . . . . 5 (𝑅 ∈ V → (𝑛 ∈ ℕ → (𝑅𝑟𝑛) = (𝑅𝑟𝑛)))
65ralrimiv 2948 . . . 4 (𝑅 ∈ V → ∀𝑛 ∈ ℕ (𝑅𝑟𝑛) = (𝑅𝑟𝑛))
7 iuneq2 4468 . . . 4 (∀𝑛 ∈ ℕ (𝑅𝑟𝑛) = (𝑅𝑟𝑛) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
86, 7syl 17 . . 3 (𝑅 ∈ V → 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
9 oveq1 6534 . . . . . . 7 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
109iuneq2d 4478 . . . . . 6 (𝑟 = 𝑅 𝑛 ∈ ℕ (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
11 dftrcl3 36825 . . . . . 6 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
12 nnex 10876 . . . . . . 7 ℕ ∈ V
13 ovex 6555 . . . . . . 7 (𝑅𝑟𝑛) ∈ V
1412, 13iunex 7017 . . . . . 6 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
1510, 11, 14fvmpt 6176 . . . . 5 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
1615cnveqd 5208 . . . 4 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
17 cnviun 36755 . . . 4 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛)
1816, 17syl6eq 2660 . . 3 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
19 cnvexg 6983 . . . 4 (𝑅 ∈ V → 𝑅 ∈ V)
20 oveq1 6534 . . . . . 6 (𝑠 = 𝑅 → (𝑠𝑟𝑛) = (𝑅𝑟𝑛))
2120iuneq2d 4478 . . . . 5 (𝑠 = 𝑅 𝑛 ∈ ℕ (𝑠𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
22 dftrcl3 36825 . . . . 5 t+ = (𝑠 ∈ V ↦ 𝑛 ∈ ℕ (𝑠𝑟𝑛))
23 ovex 6555 . . . . . 6 (𝑅𝑟𝑛) ∈ V
2412, 23iunex 7017 . . . . 5 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
2521, 22, 24fvmpt 6176 . . . 4 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
2619, 25syl 17 . . 3 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
278, 18, 263eqtr4d 2654 . 2 (𝑅 ∈ V → (t+‘𝑅) = (t+‘𝑅))
281, 27syl 17 1 (𝑅𝑉(t+‘𝑅) = (t+‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173   ciun 4450  ccnv 5027  cfv 5790  (class class class)co 6527  cn 10870  0cn0 11142  t+ctcl 13521  𝑟crelexp 13557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-n0 11143  df-z 11214  df-uz 11523  df-seq 12622  df-trcl 13523  df-relexp 13558
This theorem is referenced by:  rntrclfvRP  36836
  Copyright terms: Public domain W3C validator