Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvtrrel Structured version   Visualization version   GIF version

Theorem cnvtrrel 37470
Description: The converse of a transitive relation is a transitive relation. (Contributed by Richard Penner, 25-Dec-2019.)
Assertion
Ref Expression
cnvtrrel ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)

Proof of Theorem cnvtrrel
StepHypRef Expression
1 cnvss 5259 . . 3 ((𝑆𝑆) ⊆ 𝑆(𝑆𝑆) ⊆ 𝑆)
2 cnvss 5259 . . . 4 ((𝑆𝑆) ⊆ 𝑆(𝑆𝑆) ⊆ 𝑆)
3 cnvco 5273 . . . . . . . . 9 (𝑆𝑆) = (𝑆𝑆)
43cnveqi 5262 . . . . . . . 8 (𝑆𝑆) = (𝑆𝑆)
5 cnvco 5273 . . . . . . . 8 (𝑆𝑆) = (𝑆𝑆)
6 cocnvcnv1 5610 . . . . . . . . 9 (𝑆𝑆) = (𝑆𝑆)
7 cocnvcnv2 5611 . . . . . . . . 9 (𝑆𝑆) = (𝑆𝑆)
86, 7eqtri 2643 . . . . . . . 8 (𝑆𝑆) = (𝑆𝑆)
94, 5, 83eqtri 2647 . . . . . . 7 (𝑆𝑆) = (𝑆𝑆)
109sseq1i 3613 . . . . . 6 ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)
1110biimpi 206 . . . . 5 ((𝑆𝑆) ⊆ 𝑆 → (𝑆𝑆) ⊆ 𝑆)
12 cnvcnvss 5553 . . . . 5 𝑆𝑆
1311, 12syl6ss 3599 . . . 4 ((𝑆𝑆) ⊆ 𝑆 → (𝑆𝑆) ⊆ 𝑆)
142, 13syl 17 . . 3 ((𝑆𝑆) ⊆ 𝑆 → (𝑆𝑆) ⊆ 𝑆)
151, 14impbii 199 . 2 ((𝑆𝑆) ⊆ 𝑆(𝑆𝑆) ⊆ 𝑆)
163sseq1i 3613 . 2 ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)
1715, 16bitri 264 1 ((𝑆𝑆) ⊆ 𝑆 ↔ (𝑆𝑆) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wss 3559  ccnv 5078  ccom 5083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator