MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvun Structured version   Visualization version   GIF version

Theorem cnvun 5994
Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvun (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 5556 . . 3 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥}
2 unopab 5136 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝑦𝐵𝑥)}
3 brun 5108 . . . . 5 (𝑦(𝐴𝐵)𝑥 ↔ (𝑦𝐴𝑥𝑦𝐵𝑥))
43opabbii 5124 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥} = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝑦𝐵𝑥)}
52, 4eqtr4i 2844 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}) = {⟨𝑥, 𝑦⟩ ∣ 𝑦(𝐴𝐵)𝑥}
61, 5eqtr4i 2844 . 2 (𝐴𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
7 df-cnv 5556 . . 3 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
8 df-cnv 5556 . . 3 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
97, 8uneq12i 4134 . 2 (𝐴𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
106, 9eqtr4i 2844 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 841   = wceq 1528  cun 3931   class class class wbr 5057  {copab 5119  ccnv 5547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-v 3494  df-un 3938  df-br 5058  df-opab 5120  df-cnv 5556
This theorem is referenced by:  rnun  5997  funcnvpr  6409  funcnvtp  6410  funcnvqp  6411  f1oun  6627  f1oprswap  6651  suppun  7839  sbthlem8  8622  domss2  8664  1sdom  8709  fsuppun  8840  fpwwe2lem13  10052  trclublem  14343  mbfres2  24173  ex-cnv  28143  cnvprop  30358  padct  30381  cycpmconjslem2  30724  eulerpartlemt  31528  mthmpps  32726  clcnvlem  39861  frege131d  39987
  Copyright terms: Public domain W3C validator