MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coafval Structured version   Visualization version   GIF version

Theorem coafval 16761
Description: The value of the composition of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o · = (compa𝐶)
coafval.a 𝐴 = (Arrow‘𝐶)
coafval.x = (comp‘𝐶)
Assertion
Ref Expression
coafval · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
Distinct variable groups:   𝑓,𝑔,,𝐴   𝐶,𝑓,𝑔,
Allowed substitution hints:   (𝑓,𝑔,)   · (𝑓,𝑔,)

Proof of Theorem coafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 coafval.o . 2 · = (compa𝐶)
2 fveq2 6229 . . . . . 6 (𝑐 = 𝐶 → (Arrow‘𝑐) = (Arrow‘𝐶))
3 coafval.a . . . . . 6 𝐴 = (Arrow‘𝐶)
42, 3syl6eqr 2703 . . . . 5 (𝑐 = 𝐶 → (Arrow‘𝑐) = 𝐴)
54rabeqdv 3225 . . . . 5 (𝑐 = 𝐶 → { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} = {𝐴 ∣ (coda) = (doma𝑔)})
6 fveq2 6229 . . . . . . . . 9 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
7 coafval.x . . . . . . . . 9 = (comp‘𝐶)
86, 7syl6eqr 2703 . . . . . . . 8 (𝑐 = 𝐶 → (comp‘𝑐) = )
98oveqd 6707 . . . . . . 7 (𝑐 = 𝐶 → (⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔)) = (⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔)))
109oveqd 6707 . . . . . 6 (𝑐 = 𝐶 → ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓)) = ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓)))
1110oteq3d 4447 . . . . 5 (𝑐 = 𝐶 → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩ = ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
124, 5, 11mpt2eq123dv 6759 . . . 4 (𝑐 = 𝐶 → (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
13 df-coa 16753 . . . 4 compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩))
14 fvex 6239 . . . . . 6 (Arrow‘𝐶) ∈ V
153, 14eqeltri 2726 . . . . 5 𝐴 ∈ V
1615rabex 4845 . . . . 5 {𝐴 ∣ (coda) = (doma𝑔)} ∈ V
1715, 16mpt2ex 7292 . . . 4 (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) ∈ V
1812, 13, 17fvmpt 6321 . . 3 (𝐶 ∈ Cat → (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
1913dmmptss 5669 . . . . . . 7 dom compa ⊆ Cat
2019sseli 3632 . . . . . 6 (𝐶 ∈ dom compa𝐶 ∈ Cat)
2120con3i 150 . . . . 5 𝐶 ∈ Cat → ¬ 𝐶 ∈ dom compa)
22 ndmfv 6256 . . . . 5 𝐶 ∈ dom compa → (compa𝐶) = ∅)
2321, 22syl 17 . . . 4 𝐶 ∈ Cat → (compa𝐶) = ∅)
243arwrcl 16741 . . . . . . . 8 (𝑓𝐴𝐶 ∈ Cat)
2524con3i 150 . . . . . . 7 𝐶 ∈ Cat → ¬ 𝑓𝐴)
2625eq0rdv 4012 . . . . . 6 𝐶 ∈ Cat → 𝐴 = ∅)
27 eqidd 2652 . . . . . 6 𝐶 ∈ Cat → {𝐴 ∣ (coda) = (doma𝑔)} = {𝐴 ∣ (coda) = (doma𝑔)})
28 eqidd 2652 . . . . . 6 𝐶 ∈ Cat → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ = ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
2926, 27, 28mpt2eq123dv 6759 . . . . 5 𝐶 ∈ Cat → (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = (𝑔 ∈ ∅, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
30 mpt20 6767 . . . . 5 (𝑔 ∈ ∅, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = ∅
3129, 30syl6eq 2701 . . . 4 𝐶 ∈ Cat → (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = ∅)
3223, 31eqtr4d 2688 . . 3 𝐶 ∈ Cat → (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
3318, 32pm2.61i 176 . 2 (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
341, 33eqtri 2673 1 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1523  wcel 2030  {crab 2945  Vcvv 3231  c0 3948  cop 4216  cotp 4218  dom cdm 5143  cfv 5926  (class class class)co 6690  cmpt2 6692  2nd c2nd 7209  compcco 16000  Catccat 16372  domacdoma 16717  codaccoda 16718  Arrowcarw 16719  compaccoa 16751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-ot 4219  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-arw 16724  df-coa 16753
This theorem is referenced by:  eldmcoa  16762  dmcoass  16763  coaval  16765  coapm  16768
  Copyright terms: Public domain W3C validator