MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  codir Structured version   Visualization version   GIF version

Theorem codir 5973
Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
codir ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧

Proof of Theorem codir
StepHypRef Expression
1 opelxp 5584 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2 df-br 5058 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))
3 brcodir 5972 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
43el2v 3499 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
52, 4bitr3i 278 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
61, 5imbi12i 352 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ((𝑥𝐴𝑦𝐵) → ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
762albii 1812 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
8 relxp 5566 . . 3 Rel (𝐴 × 𝐵)
9 ssrel 5650 . . 3 (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))))
108, 9ax-mp 5 . 2 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)))
11 r2al 3198 . 2 (∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
127, 10, 113bitr4i 304 1 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1526  wex 1771  wcel 2105  wral 3135  Vcvv 3492  wss 3933  cop 4563   class class class wbr 5057   × cxp 5546  ccnv 5547  ccom 5552  Rel wrel 5553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-br 5058  df-opab 5120  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557
This theorem is referenced by:  dirge  17835  filnetlem3  33625
  Copyright terms: Public domain W3C validator