MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fzgsumd Structured version   Visualization version   GIF version

Theorem coe1fzgsumd 19894
Description: Value of an evaluated coefficient in a finite group sum of polynomials. (Contributed by AV, 8-Oct-2019.)
Hypotheses
Ref Expression
coe1fzgsumd.p 𝑃 = (Poly1𝑅)
coe1fzgsumd.b 𝐵 = (Base‘𝑃)
coe1fzgsumd.r (𝜑𝑅 ∈ Ring)
coe1fzgsumd.k (𝜑𝐾 ∈ ℕ0)
coe1fzgsumd.m (𝜑 → ∀𝑥𝑁 𝑀𝐵)
coe1fzgsumd.n (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
coe1fzgsumd (𝜑 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝑀(𝑥)

Proof of Theorem coe1fzgsumd
Dummy variables 𝑎 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1fzgsumd.m . 2 (𝜑 → ∀𝑥𝑁 𝑀𝐵)
2 coe1fzgsumd.n . . 3 (𝜑𝑁 ∈ Fin)
3 raleq 3277 . . . . . . 7 (𝑛 = ∅ → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥 ∈ ∅ 𝑀𝐵))
43anbi2d 742 . . . . . 6 (𝑛 = ∅ → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵)))
5 mpteq1 4889 . . . . . . . . . 10 (𝑛 = ∅ → (𝑥𝑛𝑀) = (𝑥 ∈ ∅ ↦ 𝑀))
65oveq2d 6830 . . . . . . . . 9 (𝑛 = ∅ → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))
76fveq2d 6357 . . . . . . . 8 (𝑛 = ∅ → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))))
87fveq1d 6355 . . . . . . 7 (𝑛 = ∅ → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾))
9 mpteq1 4889 . . . . . . . 8 (𝑛 = ∅ → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)))
109oveq2d 6830 . . . . . . 7 (𝑛 = ∅ → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
118, 10eqeq12d 2775 . . . . . 6 (𝑛 = ∅ → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)))))
124, 11imbi12d 333 . . . . 5 (𝑛 = ∅ → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))))
13 raleq 3277 . . . . . . 7 (𝑛 = 𝑚 → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥𝑚 𝑀𝐵))
1413anbi2d 742 . . . . . 6 (𝑛 = 𝑚 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥𝑚 𝑀𝐵)))
15 mpteq1 4889 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥𝑛𝑀) = (𝑥𝑚𝑀))
1615oveq2d 6830 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑚𝑀)))
1716fveq2d 6357 . . . . . . . 8 (𝑛 = 𝑚 → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥𝑚𝑀))))
1817fveq1d 6355 . . . . . . 7 (𝑛 = 𝑚 → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾))
19 mpteq1 4889 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))
2019oveq2d 6830 . . . . . . 7 (𝑛 = 𝑚 → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))
2118, 20eqeq12d 2775 . . . . . 6 (𝑛 = 𝑚 → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))))
2214, 21imbi12d 333 . . . . 5 (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))))
23 raleq 3277 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵))
2423anbi2d 742 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵)))
25 mpteq1 4889 . . . . . . . . . 10 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛𝑀) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))
2625oveq2d 6830 . . . . . . . . 9 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))
2726fveq2d 6357 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))))
2827fveq1d 6355 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾))
29 mpteq1 4889 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))
3029oveq2d 6830 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
3128, 30eqeq12d 2775 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
3224, 31imbi12d 333 . . . . 5 (𝑛 = (𝑚 ∪ {𝑎}) → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
33 raleq 3277 . . . . . . 7 (𝑛 = 𝑁 → (∀𝑥𝑛 𝑀𝐵 ↔ ∀𝑥𝑁 𝑀𝐵))
3433anbi2d 742 . . . . . 6 (𝑛 = 𝑁 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) ↔ (𝜑 ∧ ∀𝑥𝑁 𝑀𝐵)))
35 mpteq1 4889 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑥𝑛𝑀) = (𝑥𝑁𝑀))
3635oveq2d 6830 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑁𝑀)))
3736fveq2d 6357 . . . . . . . 8 (𝑛 = 𝑁 → (coe1‘(𝑃 Σg (𝑥𝑛𝑀))) = (coe1‘(𝑃 Σg (𝑥𝑁𝑀))))
3837fveq1d 6355 . . . . . . 7 (𝑛 = 𝑁 → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾))
39 mpteq1 4889 . . . . . . . 8 (𝑛 = 𝑁 → (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)) = (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))
4039oveq2d 6830 . . . . . . 7 (𝑛 = 𝑁 → (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
4138, 40eqeq12d 2775 . . . . . 6 (𝑛 = 𝑁 → (((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾))) ↔ ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
4234, 41imbi12d 333 . . . . 5 (𝑛 = 𝑁 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑛 ↦ ((coe1𝑀)‘𝐾)))) ↔ ((𝜑 ∧ ∀𝑥𝑁 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))))
43 mpt0 6182 . . . . . . . . . . . . 13 (𝑥 ∈ ∅ ↦ 𝑀) = ∅
4443oveq2i 6825 . . . . . . . . . . . 12 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (𝑃 Σg ∅)
45 eqid 2760 . . . . . . . . . . . . 13 (0g𝑃) = (0g𝑃)
4645gsum0 17499 . . . . . . . . . . . 12 (𝑃 Σg ∅) = (0g𝑃)
4744, 46eqtri 2782 . . . . . . . . . . 11 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (0g𝑃)
4847fveq2i 6356 . . . . . . . . . 10 (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (coe1‘(0g𝑃))
4948a1i 11 . . . . . . . . 9 (𝜑 → (coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (coe1‘(0g𝑃)))
5049fveq1d 6355 . . . . . . . 8 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = ((coe1‘(0g𝑃))‘𝐾))
51 coe1fzgsumd.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
52 coe1fzgsumd.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
53 eqid 2760 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
5452, 45, 53coe1z 19855 . . . . . . . . . 10 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
5551, 54syl 17 . . . . . . . . 9 (𝜑 → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
5655fveq1d 6355 . . . . . . . 8 (𝜑 → ((coe1‘(0g𝑃))‘𝐾) = ((ℕ0 × {(0g𝑅)})‘𝐾))
57 fvex 6363 . . . . . . . . 9 (0g𝑅) ∈ V
58 coe1fzgsumd.k . . . . . . . . 9 (𝜑𝐾 ∈ ℕ0)
59 fvconst2g 6632 . . . . . . . . 9 (((0g𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
6057, 58, 59sylancr 698 . . . . . . . 8 (𝜑 → ((ℕ0 × {(0g𝑅)})‘𝐾) = (0g𝑅))
6150, 56, 603eqtrd 2798 . . . . . . 7 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (0g𝑅))
62 mpt0 6182 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾)) = ∅
6362oveq2i 6825 . . . . . . . 8 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg ∅)
6453gsum0 17499 . . . . . . . 8 (𝑅 Σg ∅) = (0g𝑅)
6563, 64eqtri 2782 . . . . . . 7 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))) = (0g𝑅)
6661, 65syl6eqr 2812 . . . . . 6 (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
6766adantr 472 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((coe1𝑀)‘𝐾))))
68 coe1fzgsumd.b . . . . . . . . 9 𝐵 = (Base‘𝑃)
6952, 68, 51, 58coe1fzgsumdlem 19893 . . . . . . . 8 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
70693expia 1115 . . . . . . 7 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (𝜑 → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
7170a2d 29 . . . . . 6 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → ((𝜑 → (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
72 impexp 461 . . . . . 6 (((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) ↔ (𝜑 → (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))))
73 impexp 461 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))) ↔ (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
7471, 72, 733imtr4g 285 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (((𝜑 ∧ ∀𝑥𝑚 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
7512, 22, 32, 42, 67, 74findcard2s 8368 . . . 4 (𝑁 ∈ Fin → ((𝜑 ∧ ∀𝑥𝑁 𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
7675expd 451 . . 3 (𝑁 ∈ Fin → (𝜑 → (∀𝑥𝑁 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))))
772, 76mpcom 38 . 2 (𝜑 → (∀𝑥𝑁 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾)))))
781, 77mpd 15 1 (𝜑 → ((coe1‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑁 ↦ ((coe1𝑀)‘𝐾))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  cun 3713  c0 4058  {csn 4321  cmpt 4881   × cxp 5264  cfv 6049  (class class class)co 6814  Fincfn 8123  0cn0 11504  Basecbs 16079  0gc0g 16322   Σg cgsu 16323  Ringcrg 18767  Poly1cpl1 19769  coe1cco1 19770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-ofr 7064  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-fzo 12680  df-seq 13016  df-hash 13332  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-tset 16182  df-ple 16183  df-0g 16324  df-gsum 16325  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-mulg 17762  df-subg 17812  df-ghm 17879  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-subrg 19000  df-psr 19578  df-mpl 19580  df-opsr 19582  df-psr1 19772  df-ply1 19774  df-coe1 19775
This theorem is referenced by:  gsummoncoe1  19896  cpmatmcllem  20745  decpmatmullem  20798  mp2pm2mplem4  20836
  Copyright terms: Public domain W3C validator