MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1sfi Structured version   Visualization version   GIF version

Theorem coe1sfi 20384
Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 19-Jul-2019.)
Hypotheses
Ref Expression
coe1sfi.a 𝐴 = (coe1𝐹)
coe1sfi.b 𝐵 = (Base‘𝑃)
coe1sfi.p 𝑃 = (Poly1𝑅)
coe1sfi.z 0 = (0g𝑅)
Assertion
Ref Expression
coe1sfi (𝐹𝐵𝐴 finSupp 0 )

Proof of Theorem coe1sfi
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1sfi.a . . 3 𝐴 = (coe1𝐹)
2 coe1sfi.b . . 3 𝐵 = (Base‘𝑃)
3 coe1sfi.p . . 3 𝑃 = (Poly1𝑅)
4 df1o2 8119 . . . 4 1o = {∅}
5 nn0ex 11906 . . . 4 0 ∈ V
6 0ex 5214 . . . 4 ∅ ∈ V
7 eqid 2824 . . . 4 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))
84, 5, 6, 7mapsncnv 8460 . . 3 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))
91, 2, 3, 8coe1fval2 20381 . 2 (𝐹𝐵𝐴 = (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))))
10 eqid 2824 . . . 4 (1o mPoly 𝑅) = (1o mPoly 𝑅)
11 eqid 2824 . . . 4 (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅))
12 coe1sfi.z . . . 4 0 = (0g𝑅)
133, 2ply1bascl2 20375 . . . 4 (𝐹𝐵𝐹 ∈ (Base‘(1o mPoly 𝑅)))
143, 2elbasfv 16547 . . . 4 (𝐹𝐵𝑅 ∈ V)
1510, 11, 12, 13, 14mplelsfi 20274 . . 3 (𝐹𝐵𝐹 finSupp 0 )
164, 5, 6, 7mapsnf1o2 8461 . . . . 5 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
17 f1ocnv 6630 . . . . 5 ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1-onto→(ℕ0m 1o))
18 f1of1 6617 . . . . 5 ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1-onto→(ℕ0m 1o) → (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1→(ℕ0m 1o))
1916, 17, 18mp2b 10 . . . 4 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1→(ℕ0m 1o)
2019a1i 11 . . 3 (𝐹𝐵(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1→(ℕ0m 1o))
2112fvexi 6687 . . . 4 0 ∈ V
2221a1i 11 . . 3 (𝐹𝐵0 ∈ V)
23 id 22 . . 3 (𝐹𝐵𝐹𝐵)
2415, 20, 22, 23fsuppco 8868 . 2 (𝐹𝐵 → (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))) finSupp 0 )
259, 24eqbrtrd 5091 1 (𝐹𝐵𝐴 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  Vcvv 3497  c0 4294   class class class wbr 5069  cmpt 5149  ccnv 5557  ccom 5562  1-1wf1 6355  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  1oc1o 8098  m cmap 8409   finSupp cfsupp 8836  0cn0 11900  Basecbs 16486  0gc0g 16716   mPoly cmpl 20136  Poly1cpl1 20348  coe1cco1 20349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-tset 16587  df-ple 16588  df-psr 20139  df-mpl 20141  df-opsr 20143  df-psr1 20351  df-ply1 20353  df-coe1 20354
This theorem is referenced by:  coe1fsupp  20385  mptcoe1fsupp  20386  ply1coefsupp  20466  mptcoe1matfsupp  21413  mp2pm2mplem4  21420  plypf1  24805
  Copyright terms: Public domain W3C validator