MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1termlem Structured version   Visualization version   GIF version

Theorem coe1termlem 23730
Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
coe1term.1 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
Assertion
Ref Expression
coe1termlem ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁)))
Distinct variable groups:   𝑧,𝑛,𝐴   𝑛,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑧,𝑛)

Proof of Theorem coe1termlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ssid 3581 . . . 4 ℂ ⊆ ℂ
2 coe1term.1 . . . . 5 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
32ply1term 23676 . . . 4 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
41, 3mp3an1 1402 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘ℂ))
5 simpr 475 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
6 simpl 471 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
7 0cn 9883 . . . . . 6 0 ∈ ℂ
8 ifcl 4074 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
96, 7, 8sylancl 692 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
109adantr 479 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → if(𝑛 = 𝑁, 𝐴, 0) ∈ ℂ)
11 eqid 2604 . . . 4 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))
1210, 11fmptd 6272 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ)
13 simpr 475 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
14 ifcl 4074 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
156, 7, 14sylancl 692 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
1615adantr 479 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
17 eqeq1 2608 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 = 𝑁𝑘 = 𝑁))
1817ifbid 4052 . . . . . . . . 9 (𝑛 = 𝑘 → if(𝑛 = 𝑁, 𝐴, 0) = if(𝑘 = 𝑁, 𝐴, 0))
1918, 11fvmptg 6169 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) = if(𝑘 = 𝑁, 𝐴, 0))
2013, 16, 19syl2anc 690 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) = if(𝑘 = 𝑁, 𝐴, 0))
2120neeq1d 2835 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ if(𝑘 = 𝑁, 𝐴, 0) ≠ 0))
22 nn0re 11143 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2322leidd 10438 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁𝑁)
2423ad2antlr 758 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑁𝑁)
25 iffalse 4039 . . . . . . . . 9 𝑘 = 𝑁 → if(𝑘 = 𝑁, 𝐴, 0) = 0)
2625necon1ai 2803 . . . . . . . 8 (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → 𝑘 = 𝑁)
2726breq1d 4582 . . . . . . 7 (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → (𝑘𝑁𝑁𝑁))
2824, 27syl5ibrcom 235 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝑁, 𝐴, 0) ≠ 0 → 𝑘𝑁))
2921, 28sylbid 228 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
3029ralrimiva 2943 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
31 plyco0 23664 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)))
325, 12, 31syl2anc 690 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)))
3330, 32mpbird 245 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
342ply1termlem 23675 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
35 elfznn0 12252 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
3620oveq1d 6537 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3735, 36sylan2 489 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3837sumeq2dv 14222 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
3938mpteq2dv 4662 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
4034, 39eqtr4d 2641 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))))
414, 5, 12, 33, 40coeeq 23699 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)))
424adantr 479 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐹 ∈ (Poly‘ℂ))
435adantr 479 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℕ0)
4412adantr 479 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)):ℕ0⟶ℂ)
4533adantr 479 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
4640adantr 479 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))))
47 iftrue 4036 . . . . . . . 8 (𝑛 = 𝑁 → if(𝑛 = 𝑁, 𝐴, 0) = 𝐴)
4847, 11fvmptg 6169 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) = 𝐴)
4948ancoms 467 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) = 𝐴)
5049neeq1d 2835 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) ≠ 0 ↔ 𝐴 ≠ 0))
5150biimpar 500 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0))‘𝑁) ≠ 0)
5242, 43, 44, 45, 46, 51dgreq 23716 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (deg‘𝐹) = 𝑁)
5352ex 448 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁))
5441, 53jca 552 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wne 2774  wral 2890  wss 3534  ifcif 4030  {csn 4119   class class class wbr 4572  cmpt 4632  cima 5026  wf 5781  cfv 5785  (class class class)co 6522  cc 9785  0cc0 9787  1c1 9788   + caddc 9790   · cmul 9792  cle 9926  0cn0 11134  cuz 11514  ...cfz 12147  cexp 12672  Σcsu 14205  Polycply 23656  coeffccoe 23658  degcdgr 23659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-inf2 8393  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864  ax-pre-sup 9865  ax-addf 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-int 4400  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-se 4983  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-isom 5794  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-of 6767  df-om 6930  df-1st 7031  df-2nd 7032  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-1o 7419  df-oadd 7423  df-er 7601  df-map 7718  df-pm 7719  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-sup 8203  df-inf 8204  df-oi 8270  df-card 8620  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-div 10529  df-nn 10863  df-2 10921  df-3 10922  df-n0 11135  df-z 11206  df-uz 11515  df-rp 11660  df-fz 12148  df-fzo 12285  df-fl 12405  df-seq 12614  df-exp 12673  df-hash 12930  df-cj 13628  df-re 13629  df-im 13630  df-sqrt 13764  df-abs 13765  df-clim 14008  df-rlim 14009  df-sum 14206  df-0p 23155  df-ply 23660  df-coe 23662  df-dgr 23663
This theorem is referenced by:  coe1term  23731  dgr1term  23732
  Copyright terms: Public domain W3C validator