MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeaddlem Structured version   Visualization version   GIF version

Theorem coeaddlem 24833
Description: Lemma for coeadd 24835 and dgradd 24851. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
coeadd.3 𝑀 = (deg‘𝐹)
coeadd.4 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
coeaddlem ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f + 𝐺)) = (𝐴f + 𝐵) ∧ (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀)))

Proof of Theorem coeaddlem
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyaddcl 24804 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + 𝐺) ∈ (Poly‘ℂ))
2 coeadd.4 . . . . . 6 𝑁 = (deg‘𝐺)
3 dgrcl 24817 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
42, 3eqeltrid 2917 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
54adantl 484 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℕ0)
6 coeadd.3 . . . . . 6 𝑀 = (deg‘𝐹)
7 dgrcl 24817 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
86, 7eqeltrid 2917 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
98adantr 483 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℕ0)
105, 9ifcld 4511 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
11 addcl 10613 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1211adantl 484 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
13 coefv0.1 . . . . . 6 𝐴 = (coeff‘𝐹)
1413coef3 24816 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
1514adantr 483 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴:ℕ0⟶ℂ)
16 coeadd.2 . . . . . 6 𝐵 = (coeff‘𝐺)
1716coef3 24816 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
1817adantl 484 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵:ℕ0⟶ℂ)
19 nn0ex 11897 . . . . 5 0 ∈ V
2019a1i 11 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ℕ0 ∈ V)
21 inidm 4194 . . . 4 (ℕ0 ∩ ℕ0) = ℕ0
2212, 15, 18, 20, 20, 21off 7418 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴f + 𝐵):ℕ0⟶ℂ)
23 oveq12 7159 . . . . . . . . . 10 (((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0) → ((𝐴𝑘) + (𝐵𝑘)) = (0 + 0))
24 00id 10809 . . . . . . . . . 10 (0 + 0) = 0
2523, 24syl6eq 2872 . . . . . . . . 9 (((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0) → ((𝐴𝑘) + (𝐵𝑘)) = 0)
2615ffnd 6509 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴 Fn ℕ0)
2718ffnd 6509 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵 Fn ℕ0)
28 eqidd 2822 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) = (𝐴𝑘))
29 eqidd 2822 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) = (𝐵𝑘))
3026, 27, 20, 20, 21, 28, 29ofval 7412 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐴f + 𝐵)‘𝑘) = ((𝐴𝑘) + (𝐵𝑘)))
3130eqeq1d 2823 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) = 0 ↔ ((𝐴𝑘) + (𝐵𝑘)) = 0))
3225, 31syl5ibr 248 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0) → ((𝐴f + 𝐵)‘𝑘) = 0))
3332necon3ad 3029 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) ≠ 0 → ¬ ((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0)))
34 neorian 3111 . . . . . . 7 (((𝐴𝑘) ≠ 0 ∨ (𝐵𝑘) ≠ 0) ↔ ¬ ((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0))
3533, 34syl6ibr 254 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) ≠ 0 → ((𝐴𝑘) ≠ 0 ∨ (𝐵𝑘) ≠ 0)))
3613, 6dgrub2 24819 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
3736adantr 483 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
38 plyco0 24776 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀)))
399, 15, 38syl2anc 586 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀)))
4037, 39mpbid 234 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
4140r19.21bi 3208 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
429adantr 483 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
4342nn0red 11950 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℝ)
445adantr 483 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ0)
4544nn0red 11950 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℝ)
46 max1 12572 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4743, 45, 46syl2anc 586 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
48 nn0re 11900 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
4948adantl 484 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
5010adantr 483 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
5150nn0red 11950 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ)
52 letr 10728 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ) → ((𝑘𝑀𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5349, 43, 51, 52syl3anc 1367 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝑘𝑀𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5447, 53mpan2d 692 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝑘𝑀𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5541, 54syld 47 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5616, 2dgrub2 24819 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
5756adantl 484 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
58 plyco0 24776 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐵:ℕ0⟶ℂ) → ((𝐵 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁)))
595, 18, 58syl2anc 586 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐵 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁)))
6057, 59mpbid 234 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
6160r19.21bi 3208 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
62 max2 12574 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
6343, 45, 62syl2anc 586 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
64 letr 10728 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ) → ((𝑘𝑁𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6549, 45, 51, 64syl3anc 1367 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝑘𝑁𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6663, 65mpan2d 692 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝑘𝑁𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6761, 66syld 47 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6855, 67jaod 855 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) ≠ 0 ∨ (𝐵𝑘) ≠ 0) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6935, 68syld 47 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
7069ralrimiva 3182 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑘 ∈ ℕ0 (((𝐴f + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
71 plyco0 24776 . . . . 5 ((if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0 ∧ (𝐴f + 𝐵):ℕ0⟶ℂ) → (((𝐴f + 𝐵) “ (ℤ‘(if(𝑀𝑁, 𝑁, 𝑀) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝐴f + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀))))
7210, 22, 71syl2anc 586 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (((𝐴f + 𝐵) “ (ℤ‘(if(𝑀𝑁, 𝑁, 𝑀) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝐴f + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀))))
7370, 72mpbird 259 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴f + 𝐵) “ (ℤ‘(if(𝑀𝑁, 𝑁, 𝑀) + 1))) = {0})
74 simpl 485 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
75 simpr 487 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
7613, 6coeid 24822 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
7776adantr 483 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
7816, 2coeid 24822 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
7978adantl 484 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
8074, 75, 9, 5, 15, 18, 37, 57, 77, 79plyaddlem1 24797 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴f + 𝐵)‘𝑘) · (𝑧𝑘))))
811, 10, 22, 73, 80coeeq 24811 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + 𝐺)) = (𝐴f + 𝐵))
82 elfznn0 12994 . . . 4 (𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0)
83 ffvelrn 6843 . . . 4 (((𝐴f + 𝐵):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴f + 𝐵)‘𝑘) ∈ ℂ)
8422, 82, 83syl2an 597 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → ((𝐴f + 𝐵)‘𝑘) ∈ ℂ)
851, 10, 84, 80dgrle 24827 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
8681, 85jca 514 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f + 𝐺)) = (𝐴f + 𝐵) ∧ (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3494  ifcif 4466  {csn 4560   class class class wbr 5058  cmpt 5138  cima 5552  wf 6345  cfv 6349  (class class class)co 7150  f cof 7401  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cle 10670  0cn0 11891  cuz 12237  ...cfz 12886  cexp 13423  Σcsu 15036  Polycply 24768  coeffccoe 24770  degcdgr 24771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-0p 24265  df-ply 24772  df-coe 24774  df-dgr 24775
This theorem is referenced by:  coeadd  24835  dgradd  24851
  Copyright terms: Public domain W3C validator