MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeulem Structured version   Visualization version   GIF version

Theorem coeeulem 24808
Description: Lemma for coeeu 24809. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
coeeu.1 (𝜑𝐹 ∈ (Poly‘𝑆))
coeeu.2 (𝜑𝐴 ∈ (ℂ ↑m0))
coeeu.3 (𝜑𝐵 ∈ (ℂ ↑m0))
coeeu.4 (𝜑𝑀 ∈ ℕ0)
coeeu.5 (𝜑𝑁 ∈ ℕ0)
coeeu.6 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
coeeu.7 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
coeeu.8 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
coeeu.9 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
coeeulem (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑧,𝑘,𝐵   𝜑,𝑘,𝑧   𝐴,𝑘,𝑧   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧
Allowed substitution hints:   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeulem
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssidd 3990 . . 3 (𝜑 → ℂ ⊆ ℂ)
2 coeeu.4 . . . 4 (𝜑𝑀 ∈ ℕ0)
3 coeeu.5 . . . 4 (𝜑𝑁 ∈ ℕ0)
42, 3nn0addcld 11953 . . 3 (𝜑 → (𝑀 + 𝑁) ∈ ℕ0)
5 subcl 10879 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) ∈ ℂ)
65adantl 484 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥𝑦) ∈ ℂ)
7 coeeu.2 . . . . . . 7 (𝜑𝐴 ∈ (ℂ ↑m0))
8 cnex 10612 . . . . . . . 8 ℂ ∈ V
9 nn0ex 11897 . . . . . . . 8 0 ∈ V
108, 9elmap 8429 . . . . . . 7 (𝐴 ∈ (ℂ ↑m0) ↔ 𝐴:ℕ0⟶ℂ)
117, 10sylib 220 . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
12 coeeu.3 . . . . . . 7 (𝜑𝐵 ∈ (ℂ ↑m0))
138, 9elmap 8429 . . . . . . 7 (𝐵 ∈ (ℂ ↑m0) ↔ 𝐵:ℕ0⟶ℂ)
1412, 13sylib 220 . . . . . 6 (𝜑𝐵:ℕ0⟶ℂ)
159a1i 11 . . . . . 6 (𝜑 → ℕ0 ∈ V)
16 inidm 4195 . . . . . 6 (ℕ0 ∩ ℕ0) = ℕ0
176, 11, 14, 15, 15, 16off 7418 . . . . 5 (𝜑 → (𝐴f𝐵):ℕ0⟶ℂ)
188, 9elmap 8429 . . . . 5 ((𝐴f𝐵) ∈ (ℂ ↑m0) ↔ (𝐴f𝐵):ℕ0⟶ℂ)
1917, 18sylibr 236 . . . 4 (𝜑 → (𝐴f𝐵) ∈ (ℂ ↑m0))
20 0cn 10627 . . . . . . 7 0 ∈ ℂ
21 snssi 4735 . . . . . . 7 (0 ∈ ℂ → {0} ⊆ ℂ)
2220, 21ax-mp 5 . . . . . 6 {0} ⊆ ℂ
23 ssequn2 4159 . . . . . 6 ({0} ⊆ ℂ ↔ (ℂ ∪ {0}) = ℂ)
2422, 23mpbi 232 . . . . 5 (ℂ ∪ {0}) = ℂ
2524oveq1i 7160 . . . 4 ((ℂ ∪ {0}) ↑m0) = (ℂ ↑m0)
2619, 25eleqtrrdi 2924 . . 3 (𝜑 → (𝐴f𝐵) ∈ ((ℂ ∪ {0}) ↑m0))
274nn0red 11950 . . . . . . . 8 (𝜑 → (𝑀 + 𝑁) ∈ ℝ)
28 nn0re 11900 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
29 ltnle 10714 . . . . . . . 8 (((𝑀 + 𝑁) ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝑀 + 𝑁) < 𝑘 ↔ ¬ 𝑘 ≤ (𝑀 + 𝑁)))
3027, 28, 29syl2an 597 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑀 + 𝑁) < 𝑘 ↔ ¬ 𝑘 ≤ (𝑀 + 𝑁)))
3111ffnd 6510 . . . . . . . . . . 11 (𝜑𝐴 Fn ℕ0)
3214ffnd 6510 . . . . . . . . . . 11 (𝜑𝐵 Fn ℕ0)
33 eqidd 2822 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) = (𝐴𝑘))
34 eqidd 2822 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐵𝑘) = (𝐵𝑘))
3531, 32, 15, 15, 16, 33, 34ofval 7412 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((𝐴f𝐵)‘𝑘) = ((𝐴𝑘) − (𝐵𝑘)))
3635adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴f𝐵)‘𝑘) = ((𝐴𝑘) − (𝐵𝑘)))
372nn0red 11950 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
3837adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑀 ∈ ℝ)
3927adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑀 + 𝑁) ∈ ℝ)
4028adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
4140adantrr 715 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑘 ∈ ℝ)
422nn0cnd 11951 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℂ)
433nn0cnd 11951 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℂ)
4442, 43addcomd 10836 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + 𝑁) = (𝑁 + 𝑀))
45 nn0uz 12274 . . . . . . . . . . . . . . . . . . . 20 0 = (ℤ‘0)
463, 45eleqtrdi 2923 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ (ℤ‘0))
472nn0zd 12079 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
48 eluzadd 12267 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ‘(0 + 𝑀)))
4946, 47, 48syl2anc 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 + 𝑀) ∈ (ℤ‘(0 + 𝑀)))
5044, 49eqeltrd 2913 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 𝑁) ∈ (ℤ‘(0 + 𝑀)))
5142addid2d 10835 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0 + 𝑀) = 𝑀)
5251fveq2d 6669 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℤ‘(0 + 𝑀)) = (ℤ𝑀))
5350, 52eleqtrd 2915 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 + 𝑁) ∈ (ℤ𝑀))
54 eluzle 12250 . . . . . . . . . . . . . . . 16 ((𝑀 + 𝑁) ∈ (ℤ𝑀) → 𝑀 ≤ (𝑀 + 𝑁))
5553, 54syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑀 ≤ (𝑀 + 𝑁))
5655adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑀 ≤ (𝑀 + 𝑁))
57 simprr 771 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑀 + 𝑁) < 𝑘)
5838, 39, 41, 56, 57lelttrd 10792 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑀 < 𝑘)
5938, 41ltnled 10781 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑀 < 𝑘 ↔ ¬ 𝑘𝑀))
6058, 59mpbid 234 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ¬ 𝑘𝑀)
61 coeeu.6 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
62 plyco0 24776 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀)))
632, 11, 62syl2anc 586 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀)))
6461, 63mpbid 234 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
6564r19.21bi 3208 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
6665adantrr 715 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
6766necon1bd 3034 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (¬ 𝑘𝑀 → (𝐴𝑘) = 0))
6860, 67mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝐴𝑘) = 0)
693nn0red 11950 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
7069adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑁 ∈ ℝ)
712, 45eleqtrdi 2923 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ‘0))
723nn0zd 12079 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℤ)
73 eluzadd 12267 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ (ℤ‘(0 + 𝑁)))
7471, 72, 73syl2anc 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 𝑁) ∈ (ℤ‘(0 + 𝑁)))
7543addid2d 10835 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0 + 𝑁) = 𝑁)
7675fveq2d 6669 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℤ‘(0 + 𝑁)) = (ℤ𝑁))
7774, 76eleqtrd 2915 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 + 𝑁) ∈ (ℤ𝑁))
78 eluzle 12250 . . . . . . . . . . . . . . . 16 ((𝑀 + 𝑁) ∈ (ℤ𝑁) → 𝑁 ≤ (𝑀 + 𝑁))
7977, 78syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ≤ (𝑀 + 𝑁))
8079adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑁 ≤ (𝑀 + 𝑁))
8170, 39, 41, 80, 57lelttrd 10792 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑁 < 𝑘)
8270, 41ltnled 10781 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑁 < 𝑘 ↔ ¬ 𝑘𝑁))
8381, 82mpbid 234 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ¬ 𝑘𝑁)
84 coeeu.7 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
85 plyco0 24776 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝐵:ℕ0⟶ℂ) → ((𝐵 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁)))
863, 14, 85syl2anc 586 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁)))
8784, 86mpbid 234 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
8887r19.21bi 3208 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
8988adantrr 715 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
9089necon1bd 3034 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (¬ 𝑘𝑁 → (𝐵𝑘) = 0))
9183, 90mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝐵𝑘) = 0)
9268, 91oveq12d 7168 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴𝑘) − (𝐵𝑘)) = (0 − 0))
93 0m0e0 11751 . . . . . . . . . 10 (0 − 0) = 0
9492, 93syl6eq 2872 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴𝑘) − (𝐵𝑘)) = 0)
9536, 94eqtrd 2856 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴f𝐵)‘𝑘) = 0)
9695expr 459 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑀 + 𝑁) < 𝑘 → ((𝐴f𝐵)‘𝑘) = 0))
9730, 96sylbird 262 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ≤ (𝑀 + 𝑁) → ((𝐴f𝐵)‘𝑘) = 0))
9897necon1ad 3033 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝐴f𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁)))
9998ralrimiva 3182 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 (((𝐴f𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁)))
100 plyco0 24776 . . . . 5 (((𝑀 + 𝑁) ∈ ℕ0 ∧ (𝐴f𝐵):ℕ0⟶ℂ) → (((𝐴f𝐵) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝐴f𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁))))
1014, 17, 100syl2anc 586 . . . 4 (𝜑 → (((𝐴f𝐵) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝐴f𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁))))
10299, 101mpbird 259 . . 3 (𝜑 → ((𝐴f𝐵) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0})
103 df-0p 24265 . . . . 5 0𝑝 = (ℂ × {0})
104 fconstmpt 5609 . . . . 5 (ℂ × {0}) = (𝑧 ∈ ℂ ↦ 0)
105103, 104eqtri 2844 . . . 4 0𝑝 = (𝑧 ∈ ℂ ↦ 0)
106 elfznn0 12994 . . . . . . . 8 (𝑘 ∈ (0...(𝑀 + 𝑁)) → 𝑘 ∈ ℕ0)
10735adantlr 713 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴f𝐵)‘𝑘) = ((𝐴𝑘) − (𝐵𝑘)))
108107oveq1d 7165 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴f𝐵)‘𝑘) · (𝑧𝑘)) = (((𝐴𝑘) − (𝐵𝑘)) · (𝑧𝑘)))
10911adantr 483 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
110109ffvelrnda 6846 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
11114adantr 483 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ)
112111ffvelrnda 6846 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
113 expcl 13441 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
114113adantll 712 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
115110, 112, 114subdird 11091 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) − (𝐵𝑘)) · (𝑧𝑘)) = (((𝐴𝑘) · (𝑧𝑘)) − ((𝐵𝑘) · (𝑧𝑘))))
116108, 115eqtrd 2856 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴f𝐵)‘𝑘) · (𝑧𝑘)) = (((𝐴𝑘) · (𝑧𝑘)) − ((𝐵𝑘) · (𝑧𝑘))))
117106, 116sylan2 594 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → (((𝐴f𝐵)‘𝑘) · (𝑧𝑘)) = (((𝐴𝑘) · (𝑧𝑘)) − ((𝐵𝑘) · (𝑧𝑘))))
118117sumeq2dv 15054 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴f𝐵)‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴𝑘) · (𝑧𝑘)) − ((𝐵𝑘) · (𝑧𝑘))))
119 fzfid 13335 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (0...(𝑀 + 𝑁)) ∈ Fin)
120110, 114mulcld 10655 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
121106, 120sylan2 594 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
122112, 114mulcld 10655 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
123106, 122sylan2 594 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → ((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
124119, 121, 123fsumsub 15137 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴𝑘) · (𝑧𝑘)) − ((𝐵𝑘) · (𝑧𝑘))) = (Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝑧𝑘)) − Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵𝑘) · (𝑧𝑘))))
125119, 121fsumcl 15084 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
126 coeeu.8 . . . . . . . . . . 11 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
127 coeeu.9 . . . . . . . . . . 11 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
128126, 127eqtr3d 2858 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
129128fveq1d 6667 . . . . . . . . 9 (𝜑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))‘𝑧) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))‘𝑧))
130129adantr 483 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))‘𝑧) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))‘𝑧))
131 simpr 487 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
132 sumex 15038 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) ∈ V
133 eqid 2821 . . . . . . . . . . 11 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
134133fvmpt2 6774 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) ∈ V) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
135131, 132, 134sylancl 588 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
136 fzss2 12941 . . . . . . . . . . . 12 ((𝑀 + 𝑁) ∈ (ℤ𝑀) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁)))
13753, 136syl 17 . . . . . . . . . . 11 (𝜑 → (0...𝑀) ⊆ (0...(𝑀 + 𝑁)))
138137adantr 483 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁)))
139138sselda 3967 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
140139, 121syldan 593 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
141 eldifn 4104 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → ¬ 𝑘 ∈ (0...𝑀))
142141adantl 484 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ¬ 𝑘 ∈ (0...𝑀))
143 eldifi 4103 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
144143, 106syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ ℕ0)
145 simpr 487 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
146145, 45eleqtrdi 2923 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
14747adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → 𝑀 ∈ ℤ)
148 elfz5 12894 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ (0...𝑀) ↔ 𝑘𝑀))
149146, 147, 148syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ (0...𝑀) ↔ 𝑘𝑀))
15065, 149sylibrd 261 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘 ∈ (0...𝑀)))
151150adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘 ∈ (0...𝑀)))
152151necon1bd 3034 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ (0...𝑀) → (𝐴𝑘) = 0))
153144, 152sylan2 594 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (¬ 𝑘 ∈ (0...𝑀) → (𝐴𝑘) = 0))
154142, 153mpd 15 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴𝑘) = 0)
155154oveq1d 7165 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
156131, 144, 113syl2an 597 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑧𝑘) ∈ ℂ)
157156mul02d 10832 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (0 · (𝑧𝑘)) = 0)
158155, 157eqtrd 2856 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴𝑘) · (𝑧𝑘)) = 0)
159138, 140, 158, 119fsumss 15076 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝑧𝑘)))
160135, 159eqtrd 2856 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))‘𝑧) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝑧𝑘)))
161 sumex 15038 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)) ∈ V
162 eqid 2821 . . . . . . . . . . 11 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))
163162fvmpt2 6774 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)) ∈ V) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))
164131, 161, 163sylancl 588 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))
165 fzss2 12941 . . . . . . . . . . . 12 ((𝑀 + 𝑁) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...(𝑀 + 𝑁)))
16677, 165syl 17 . . . . . . . . . . 11 (𝜑 → (0...𝑁) ⊆ (0...(𝑀 + 𝑁)))
167166adantr 483 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...(𝑀 + 𝑁)))
168167sselda 3967 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
169168, 123syldan 593 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
170 eldifn 4104 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁))
171170adantl 484 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁))
172 eldifi 4103 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁)) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
173172, 106syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0)
17472adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℤ)
175 elfz5 12894 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
176146, 174, 175syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
17788, 176sylibrd 261 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁)))
178177adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁)))
179178necon1bd 3034 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ (0...𝑁) → (𝐵𝑘) = 0))
180173, 179sylan2 594 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐵𝑘) = 0))
181171, 180mpd 15 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (𝐵𝑘) = 0)
182181oveq1d 7165 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → ((𝐵𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
183131, 173, 113syl2an 597 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (𝑧𝑘) ∈ ℂ)
184183mul02d 10832 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (0 · (𝑧𝑘)) = 0)
185182, 184eqtrd 2856 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → ((𝐵𝑘) · (𝑧𝑘)) = 0)
186167, 169, 185, 119fsumss 15076 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵𝑘) · (𝑧𝑘)))
187164, 186eqtrd 2856 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))‘𝑧) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵𝑘) · (𝑧𝑘)))
188130, 160, 1873eqtr3d 2864 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵𝑘) · (𝑧𝑘)))
189125, 188subeq0bd 11060 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝑧𝑘)) − Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵𝑘) · (𝑧𝑘))) = 0)
190118, 124, 1893eqtrrd 2861 . . . . 5 ((𝜑𝑧 ∈ ℂ) → 0 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴f𝐵)‘𝑘) · (𝑧𝑘)))
191190mpteq2dva 5154 . . . 4 (𝜑 → (𝑧 ∈ ℂ ↦ 0) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴f𝐵)‘𝑘) · (𝑧𝑘))))
192105, 191syl5eq 2868 . . 3 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴f𝐵)‘𝑘) · (𝑧𝑘))))
1931, 4, 26, 102, 192plyeq0 24795 . 2 (𝜑 → (𝐴f𝐵) = (ℕ0 × {0}))
194 ofsubeq0 11629 . . 3 ((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧ 𝐵:ℕ0⟶ℂ) → ((𝐴f𝐵) = (ℕ0 × {0}) ↔ 𝐴 = 𝐵))
1959, 11, 14, 194mp3an2i 1462 . 2 (𝜑 → ((𝐴f𝐵) = (ℕ0 × {0}) ↔ 𝐴 = 𝐵))
196193, 195mpbid 234 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3495  cdif 3933  cun 3934  wss 3936  {csn 4561   class class class wbr 5059  cmpt 5139   × cxp 5548  cima 5553  wf 6346  cfv 6350  (class class class)co 7150  f cof 7401  m cmap 8400  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864  0cn0 11891  cz 11975  cuz 12237  ...cfz 12886  cexp 13423  Σcsu 15036  0𝑝c0p 24264  Polycply 24768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-0p 24265
This theorem is referenced by:  coeeu  24809
  Copyright terms: Public domain W3C validator