MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeulem Structured version   Visualization version   GIF version

Theorem coeeulem 23728
Description: Lemma for coeeu 23729. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
coeeu.1 (𝜑𝐹 ∈ (Poly‘𝑆))
coeeu.2 (𝜑𝐴 ∈ (ℂ ↑𝑚0))
coeeu.3 (𝜑𝐵 ∈ (ℂ ↑𝑚0))
coeeu.4 (𝜑𝑀 ∈ ℕ0)
coeeu.5 (𝜑𝑁 ∈ ℕ0)
coeeu.6 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
coeeu.7 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
coeeu.8 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
coeeu.9 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
coeeulem (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑧,𝑘,𝐵   𝜑,𝑘,𝑧   𝐴,𝑘,𝑧   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧
Allowed substitution hints:   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeulem
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3586 . . . 4 ℂ ⊆ ℂ
21a1i 11 . . 3 (𝜑 → ℂ ⊆ ℂ)
3 coeeu.4 . . . 4 (𝜑𝑀 ∈ ℕ0)
4 coeeu.5 . . . 4 (𝜑𝑁 ∈ ℕ0)
53, 4nn0addcld 11204 . . 3 (𝜑 → (𝑀 + 𝑁) ∈ ℕ0)
6 subcl 10131 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) ∈ ℂ)
76adantl 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥𝑦) ∈ ℂ)
8 coeeu.2 . . . . . . 7 (𝜑𝐴 ∈ (ℂ ↑𝑚0))
9 cnex 9873 . . . . . . . 8 ℂ ∈ V
10 nn0ex 11147 . . . . . . . 8 0 ∈ V
119, 10elmap 7749 . . . . . . 7 (𝐴 ∈ (ℂ ↑𝑚0) ↔ 𝐴:ℕ0⟶ℂ)
128, 11sylib 206 . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
13 coeeu.3 . . . . . . 7 (𝜑𝐵 ∈ (ℂ ↑𝑚0))
149, 10elmap 7749 . . . . . . 7 (𝐵 ∈ (ℂ ↑𝑚0) ↔ 𝐵:ℕ0⟶ℂ)
1513, 14sylib 206 . . . . . 6 (𝜑𝐵:ℕ0⟶ℂ)
1610a1i 11 . . . . . 6 (𝜑 → ℕ0 ∈ V)
17 inidm 3783 . . . . . 6 (ℕ0 ∩ ℕ0) = ℕ0
187, 12, 15, 16, 16, 17off 6787 . . . . 5 (𝜑 → (𝐴𝑓𝐵):ℕ0⟶ℂ)
199, 10elmap 7749 . . . . 5 ((𝐴𝑓𝐵) ∈ (ℂ ↑𝑚0) ↔ (𝐴𝑓𝐵):ℕ0⟶ℂ)
2018, 19sylibr 222 . . . 4 (𝜑 → (𝐴𝑓𝐵) ∈ (ℂ ↑𝑚0))
21 0cn 9888 . . . . . . 7 0 ∈ ℂ
22 snssi 4279 . . . . . . 7 (0 ∈ ℂ → {0} ⊆ ℂ)
2321, 22ax-mp 5 . . . . . 6 {0} ⊆ ℂ
24 ssequn2 3747 . . . . . 6 ({0} ⊆ ℂ ↔ (ℂ ∪ {0}) = ℂ)
2523, 24mpbi 218 . . . . 5 (ℂ ∪ {0}) = ℂ
2625oveq1i 6536 . . . 4 ((ℂ ∪ {0}) ↑𝑚0) = (ℂ ↑𝑚0)
2720, 26syl6eleqr 2698 . . 3 (𝜑 → (𝐴𝑓𝐵) ∈ ((ℂ ∪ {0}) ↑𝑚0))
285nn0red 11201 . . . . . . . 8 (𝜑 → (𝑀 + 𝑁) ∈ ℝ)
29 nn0re 11150 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
30 ltnle 9968 . . . . . . . 8 (((𝑀 + 𝑁) ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝑀 + 𝑁) < 𝑘 ↔ ¬ 𝑘 ≤ (𝑀 + 𝑁)))
3128, 29, 30syl2an 492 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑀 + 𝑁) < 𝑘 ↔ ¬ 𝑘 ≤ (𝑀 + 𝑁)))
32 ffn 5943 . . . . . . . . . . . 12 (𝐴:ℕ0⟶ℂ → 𝐴 Fn ℕ0)
3312, 32syl 17 . . . . . . . . . . 11 (𝜑𝐴 Fn ℕ0)
34 ffn 5943 . . . . . . . . . . . 12 (𝐵:ℕ0⟶ℂ → 𝐵 Fn ℕ0)
3515, 34syl 17 . . . . . . . . . . 11 (𝜑𝐵 Fn ℕ0)
36 eqidd 2610 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) = (𝐴𝑘))
37 eqidd 2610 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐵𝑘) = (𝐵𝑘))
3833, 35, 16, 16, 17, 36, 37ofval 6781 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑓𝐵)‘𝑘) = ((𝐴𝑘) − (𝐵𝑘)))
3938adantrr 748 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴𝑓𝐵)‘𝑘) = ((𝐴𝑘) − (𝐵𝑘)))
403nn0red 11201 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
4140adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑀 ∈ ℝ)
4228adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑀 + 𝑁) ∈ ℝ)
4329adantl 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
4443adantrr 748 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑘 ∈ ℝ)
453nn0cnd 11202 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℂ)
464nn0cnd 11202 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℂ)
4745, 46addcomd 10089 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + 𝑁) = (𝑁 + 𝑀))
48 nn0uz 11556 . . . . . . . . . . . . . . . . . . . 20 0 = (ℤ‘0)
494, 48syl6eleq 2697 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ (ℤ‘0))
503nn0zd 11314 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
51 eluzadd 11550 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ‘(0 + 𝑀)))
5249, 50, 51syl2anc 690 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 + 𝑀) ∈ (ℤ‘(0 + 𝑀)))
5347, 52eqeltrd 2687 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 𝑁) ∈ (ℤ‘(0 + 𝑀)))
5445addid2d 10088 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0 + 𝑀) = 𝑀)
5554fveq2d 6091 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℤ‘(0 + 𝑀)) = (ℤ𝑀))
5653, 55eleqtrd 2689 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 + 𝑁) ∈ (ℤ𝑀))
57 eluzle 11534 . . . . . . . . . . . . . . . 16 ((𝑀 + 𝑁) ∈ (ℤ𝑀) → 𝑀 ≤ (𝑀 + 𝑁))
5856, 57syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑀 ≤ (𝑀 + 𝑁))
5958adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑀 ≤ (𝑀 + 𝑁))
60 simprr 791 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑀 + 𝑁) < 𝑘)
6141, 42, 44, 59, 60lelttrd 10046 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑀 < 𝑘)
6241, 44ltnled 10035 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑀 < 𝑘 ↔ ¬ 𝑘𝑀))
6361, 62mpbid 220 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ¬ 𝑘𝑀)
64 coeeu.6 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
65 plyco0 23696 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀)))
663, 12, 65syl2anc 690 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀)))
6764, 66mpbid 220 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
6867r19.21bi 2915 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
6968adantrr 748 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
7069necon1bd 2799 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (¬ 𝑘𝑀 → (𝐴𝑘) = 0))
7163, 70mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝐴𝑘) = 0)
724nn0red 11201 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
7372adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑁 ∈ ℝ)
743, 48syl6eleq 2697 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ‘0))
754nn0zd 11314 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℤ)
76 eluzadd 11550 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ (ℤ‘(0 + 𝑁)))
7774, 75, 76syl2anc 690 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 𝑁) ∈ (ℤ‘(0 + 𝑁)))
7846addid2d 10088 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0 + 𝑁) = 𝑁)
7978fveq2d 6091 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℤ‘(0 + 𝑁)) = (ℤ𝑁))
8077, 79eleqtrd 2689 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 + 𝑁) ∈ (ℤ𝑁))
81 eluzle 11534 . . . . . . . . . . . . . . . 16 ((𝑀 + 𝑁) ∈ (ℤ𝑁) → 𝑁 ≤ (𝑀 + 𝑁))
8280, 81syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ≤ (𝑀 + 𝑁))
8382adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑁 ≤ (𝑀 + 𝑁))
8473, 42, 44, 83, 60lelttrd 10046 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑁 < 𝑘)
8573, 44ltnled 10035 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑁 < 𝑘 ↔ ¬ 𝑘𝑁))
8684, 85mpbid 220 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ¬ 𝑘𝑁)
87 coeeu.7 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
88 plyco0 23696 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝐵:ℕ0⟶ℂ) → ((𝐵 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁)))
894, 15, 88syl2anc 690 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁)))
9087, 89mpbid 220 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
9190r19.21bi 2915 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
9291adantrr 748 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
9392necon1bd 2799 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (¬ 𝑘𝑁 → (𝐵𝑘) = 0))
9486, 93mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝐵𝑘) = 0)
9571, 94oveq12d 6544 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴𝑘) − (𝐵𝑘)) = (0 − 0))
96 0m0e0 10979 . . . . . . . . . 10 (0 − 0) = 0
9795, 96syl6eq 2659 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴𝑘) − (𝐵𝑘)) = 0)
9839, 97eqtrd 2643 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴𝑓𝐵)‘𝑘) = 0)
9998expr 640 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑀 + 𝑁) < 𝑘 → ((𝐴𝑓𝐵)‘𝑘) = 0))
10031, 99sylbird 248 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ≤ (𝑀 + 𝑁) → ((𝐴𝑓𝐵)‘𝑘) = 0))
101100necon1ad 2798 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑓𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁)))
102101ralrimiva 2948 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 (((𝐴𝑓𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁)))
103 plyco0 23696 . . . . 5 (((𝑀 + 𝑁) ∈ ℕ0 ∧ (𝐴𝑓𝐵):ℕ0⟶ℂ) → (((𝐴𝑓𝐵) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝐴𝑓𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁))))
1045, 18, 103syl2anc 690 . . . 4 (𝜑 → (((𝐴𝑓𝐵) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝐴𝑓𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁))))
105102, 104mpbird 245 . . 3 (𝜑 → ((𝐴𝑓𝐵) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0})
106 df-0p 23187 . . . . 5 0𝑝 = (ℂ × {0})
107 fconstmpt 5074 . . . . 5 (ℂ × {0}) = (𝑧 ∈ ℂ ↦ 0)
108106, 107eqtri 2631 . . . 4 0𝑝 = (𝑧 ∈ ℂ ↦ 0)
109 elfznn0 12259 . . . . . . . 8 (𝑘 ∈ (0...(𝑀 + 𝑁)) → 𝑘 ∈ ℕ0)
11038adantlr 746 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑓𝐵)‘𝑘) = ((𝐴𝑘) − (𝐵𝑘)))
111110oveq1d 6541 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑓𝐵)‘𝑘) · (𝑧𝑘)) = (((𝐴𝑘) − (𝐵𝑘)) · (𝑧𝑘)))
11212adantr 479 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
113112ffvelrnda 6251 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
11415adantr 479 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ)
115114ffvelrnda 6251 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
116 expcl 12697 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
117116adantll 745 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
118113, 115, 117subdird 10338 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) − (𝐵𝑘)) · (𝑧𝑘)) = (((𝐴𝑘) · (𝑧𝑘)) − ((𝐵𝑘) · (𝑧𝑘))))
119111, 118eqtrd 2643 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑓𝐵)‘𝑘) · (𝑧𝑘)) = (((𝐴𝑘) · (𝑧𝑘)) − ((𝐵𝑘) · (𝑧𝑘))))
120109, 119sylan2 489 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → (((𝐴𝑓𝐵)‘𝑘) · (𝑧𝑘)) = (((𝐴𝑘) · (𝑧𝑘)) − ((𝐵𝑘) · (𝑧𝑘))))
121120sumeq2dv 14229 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴𝑓𝐵)‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴𝑘) · (𝑧𝑘)) − ((𝐵𝑘) · (𝑧𝑘))))
122 fzfid 12591 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (0...(𝑀 + 𝑁)) ∈ Fin)
123113, 117mulcld 9916 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
124109, 123sylan2 489 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
125115, 117mulcld 9916 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
126109, 125sylan2 489 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → ((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
127122, 124, 126fsumsub 14310 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴𝑘) · (𝑧𝑘)) − ((𝐵𝑘) · (𝑧𝑘))) = (Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝑧𝑘)) − Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵𝑘) · (𝑧𝑘))))
128122, 124fsumcl 14259 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
129 coeeu.8 . . . . . . . . . . 11 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
130 coeeu.9 . . . . . . . . . . 11 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
131129, 130eqtr3d 2645 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
132131fveq1d 6089 . . . . . . . . 9 (𝜑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))‘𝑧) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))‘𝑧))
133132adantr 479 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))‘𝑧) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))‘𝑧))
134 simpr 475 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
135 sumex 14214 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) ∈ V
136 eqid 2609 . . . . . . . . . . 11 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
137136fvmpt2 6184 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) ∈ V) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
138134, 135, 137sylancl 692 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
139 fzss2 12209 . . . . . . . . . . . 12 ((𝑀 + 𝑁) ∈ (ℤ𝑀) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁)))
14056, 139syl 17 . . . . . . . . . . 11 (𝜑 → (0...𝑀) ⊆ (0...(𝑀 + 𝑁)))
141140adantr 479 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁)))
142141sselda 3567 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
143142, 124syldan 485 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
144 eldifn 3694 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → ¬ 𝑘 ∈ (0...𝑀))
145144adantl 480 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ¬ 𝑘 ∈ (0...𝑀))
146 eldifi 3693 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
147146, 109syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ ℕ0)
148 simpr 475 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
149148, 48syl6eleq 2697 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
15050adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → 𝑀 ∈ ℤ)
151 elfz5 12162 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ (0...𝑀) ↔ 𝑘𝑀))
152149, 150, 151syl2anc 690 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ (0...𝑀) ↔ 𝑘𝑀))
15368, 152sylibrd 247 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘 ∈ (0...𝑀)))
154153adantlr 746 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘 ∈ (0...𝑀)))
155154necon1bd 2799 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ (0...𝑀) → (𝐴𝑘) = 0))
156147, 155sylan2 489 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (¬ 𝑘 ∈ (0...𝑀) → (𝐴𝑘) = 0))
157145, 156mpd 15 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴𝑘) = 0)
158157oveq1d 6541 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
159134, 147, 116syl2an 492 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑧𝑘) ∈ ℂ)
160159mul02d 10085 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (0 · (𝑧𝑘)) = 0)
161158, 160eqtrd 2643 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴𝑘) · (𝑧𝑘)) = 0)
162141, 143, 161, 122fsumss 14251 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝑧𝑘)))
163138, 162eqtrd 2643 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))‘𝑧) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝑧𝑘)))
164 sumex 14214 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)) ∈ V
165 eqid 2609 . . . . . . . . . . 11 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))
166165fvmpt2 6184 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)) ∈ V) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))
167134, 164, 166sylancl 692 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))
168 fzss2 12209 . . . . . . . . . . . 12 ((𝑀 + 𝑁) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...(𝑀 + 𝑁)))
16980, 168syl 17 . . . . . . . . . . 11 (𝜑 → (0...𝑁) ⊆ (0...(𝑀 + 𝑁)))
170169adantr 479 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...(𝑀 + 𝑁)))
171170sselda 3567 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
172171, 126syldan 485 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
173 eldifn 3694 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁))
174173adantl 480 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁))
175 eldifi 3693 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁)) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
176175, 109syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0)
17775adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℤ)
178 elfz5 12162 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
179149, 177, 178syl2anc 690 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
18091, 179sylibrd 247 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁)))
181180adantlr 746 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁)))
182181necon1bd 2799 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ (0...𝑁) → (𝐵𝑘) = 0))
183176, 182sylan2 489 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐵𝑘) = 0))
184174, 183mpd 15 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (𝐵𝑘) = 0)
185184oveq1d 6541 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → ((𝐵𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
186134, 176, 116syl2an 492 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (𝑧𝑘) ∈ ℂ)
187186mul02d 10085 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (0 · (𝑧𝑘)) = 0)
188185, 187eqtrd 2643 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → ((𝐵𝑘) · (𝑧𝑘)) = 0)
189170, 172, 188, 122fsumss 14251 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵𝑘) · (𝑧𝑘)))
190167, 189eqtrd 2643 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))‘𝑧) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵𝑘) · (𝑧𝑘)))
191133, 163, 1903eqtr3d 2651 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵𝑘) · (𝑧𝑘)))
192128, 191subeq0bd 10307 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝑧𝑘)) − Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵𝑘) · (𝑧𝑘))) = 0)
193121, 127, 1923eqtrrd 2648 . . . . 5 ((𝜑𝑧 ∈ ℂ) → 0 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴𝑓𝐵)‘𝑘) · (𝑧𝑘)))
194193mpteq2dva 4666 . . . 4 (𝜑 → (𝑧 ∈ ℂ ↦ 0) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴𝑓𝐵)‘𝑘) · (𝑧𝑘))))
195108, 194syl5eq 2655 . . 3 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴𝑓𝐵)‘𝑘) · (𝑧𝑘))))
1962, 5, 27, 105, 195plyeq0 23715 . 2 (𝜑 → (𝐴𝑓𝐵) = (ℕ0 × {0}))
197 ofsubeq0 10866 . . 3 ((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧ 𝐵:ℕ0⟶ℂ) → ((𝐴𝑓𝐵) = (ℕ0 × {0}) ↔ 𝐴 = 𝐵))
19816, 12, 15, 197syl3anc 1317 . 2 (𝜑 → ((𝐴𝑓𝐵) = (ℕ0 × {0}) ↔ 𝐴 = 𝐵))
199196, 198mpbid 220 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  Vcvv 3172  cdif 3536  cun 3537  wss 3539  {csn 4124   class class class wbr 4577  cmpt 4637   × cxp 5025  cima 5030   Fn wfn 5784  wf 5785  cfv 5789  (class class class)co 6526  𝑓 cof 6770  𝑚 cmap 7721  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797   < clt 9930  cle 9931  cmin 10117  0cn0 11141  cz 11212  cuz 11521  ...cfz 12154  cexp 12679  Σcsu 14212  0𝑝c0p 23186  Polycply 23688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-n0 11142  df-z 11213  df-uz 11522  df-rp 11667  df-fz 12155  df-fzo 12292  df-fl 12412  df-seq 12621  df-exp 12680  df-hash 12937  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-clim 14015  df-rlim 14016  df-sum 14213  df-0p 23187
This theorem is referenced by:  coeeu  23729
  Copyright terms: Public domain W3C validator