MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemptyd Structured version   Visualization version   GIF version

Theorem coemptyd 13668
Description: Deduction about composition of classes with no relational content in common. (Contributed by RP, 24-Dec-2019.)
Hypothesis
Ref Expression
coemptyd.1 (𝜑 → (dom 𝐴 ∩ ran 𝐵) = ∅)
Assertion
Ref Expression
coemptyd (𝜑 → (𝐴𝐵) = ∅)

Proof of Theorem coemptyd
StepHypRef Expression
1 coemptyd.1 . 2 (𝜑 → (dom 𝐴 ∩ ran 𝐵) = ∅)
2 coeq0 5613 . 2 ((𝐴𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)
31, 2sylibr 224 1 (𝜑 → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  cin 3559  c0 3897  dom cdm 5084  ran crn 5085  ccom 5088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-br 4624  df-opab 4684  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096
This theorem is referenced by:  xptrrel  13669  conrel1d  37475  conrel2d  37476  clsneibex  37921  neicvgbex  37931
  Copyright terms: Public domain W3C validator