MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemul Structured version   Visualization version   GIF version

Theorem coemul 24207
Description: A coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
Assertion
Ref Expression
coemul ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((coeff‘(𝐹𝑓 · 𝐺))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝑁   𝑆,𝑘

Proof of Theorem coemul
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 coefv0.1 . . . . . 6 𝐴 = (coeff‘𝐹)
2 coeadd.2 . . . . . 6 𝐵 = (coeff‘𝐺)
3 eqid 2760 . . . . . 6 (deg‘𝐹) = (deg‘𝐹)
4 eqid 2760 . . . . . 6 (deg‘𝐺) = (deg‘𝐺)
51, 2, 3, 4coemullem 24205 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) ∧ (deg‘(𝐹𝑓 · 𝐺)) ≤ ((deg‘𝐹) + (deg‘𝐺))))
65simpld 477 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹𝑓 · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))))
76fveq1d 6354 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 · 𝐺))‘𝑁) = ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑁))
8 oveq2 6821 . . . . 5 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
9 oveq1 6820 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛𝑘) = (𝑁𝑘))
109fveq2d 6356 . . . . . . 7 (𝑛 = 𝑁 → (𝐵‘(𝑛𝑘)) = (𝐵‘(𝑁𝑘)))
1110oveq2d 6829 . . . . . 6 (𝑛 = 𝑁 → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = ((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
1211adantr 472 . . . . 5 ((𝑛 = 𝑁𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = ((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
138, 12sumeq12dv 14636 . . . 4 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
14 eqid 2760 . . . 4 (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))
15 sumex 14617 . . . 4 Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝐵‘(𝑁𝑘))) ∈ V
1613, 14, 15fvmpt 6444 . . 3 (𝑁 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
177, 16sylan9eq 2814 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑁 ∈ ℕ0) → ((coeff‘(𝐹𝑓 · 𝐺))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
18173impa 1101 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((coeff‘(𝐹𝑓 · 𝐺))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6813  𝑓 cof 7060  0cc0 10128   + caddc 10131   · cmul 10133  cle 10267  cmin 10458  0cn0 11484  ...cfz 12519  Σcsu 14615  Polycply 24139  coeffccoe 24141  degcdgr 24142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-fl 12787  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-rlim 14419  df-sum 14616  df-0p 23636  df-ply 24143  df-coe 24145  df-dgr 24146
This theorem is referenced by:  coemulhi  24209  coemulc  24210  vieta1lem2  24265  plymulx0  30933
  Copyright terms: Public domain W3C validator