![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq12i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
Ref | Expression |
---|---|
coeq12i.1 | ⊢ 𝐴 = 𝐵 |
coeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
coeq12i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | coeq1i 5437 | . 2 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
3 | coeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | coeq2i 5438 | . 2 ⊢ (𝐵 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
5 | 2, 4 | eqtri 2782 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∘ ccom 5270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-in 3722 df-ss 3729 df-br 4805 df-opab 4865 df-co 5275 |
This theorem is referenced by: madetsumid 20469 mdetleib2 20596 imsval 27849 pjcmul1i 29369 cotrcltrcl 38519 brtrclfv2 38521 clsneif1o 38904 |
Copyright terms: Public domain | W3C validator |