![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq2 5436 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∘ ccom 5270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-in 3722 df-ss 3729 df-br 4805 df-opab 4865 df-co 5275 |
This theorem is referenced by: coeq12i 5441 cocnvcnv2 5808 co01 5811 fcoi1 6239 dftpos2 7539 tposco 7553 canthp1 9688 cats1co 13821 isoval 16646 mvdco 18085 evlsval 19741 evl1fval1lem 19916 evl1var 19922 pf1ind 19941 imasdsf1olem 22399 hoico1 28945 hoid1i 28978 pjclem1 29384 pjclem3 29386 pjci 29389 dfpo2 31973 poimirlem9 33749 cdlemk45 36755 cononrel1 38420 trclubgNEW 38445 trclrelexplem 38523 relexpaddss 38530 cotrcltrcl 38537 cortrcltrcl 38552 corclrtrcl 38553 cotrclrcl 38554 cortrclrcl 38555 cotrclrtrcl 38556 cortrclrtrcl 38557 brco3f1o 38851 clsneibex 38920 neicvgbex 38930 subsaliuncl 41097 meadjiun 41204 |
Copyright terms: Public domain | W3C validator |